The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_\ell^{EE,BB}$ over the range $40<\ell<600$ well away from the Galactic plane. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_\ell$. For the dust, they are well described by power laws in $\ell$ with exponents $\alpha^{EE,BB}=-2.42\pm0.02$. The amplitudes of the polarization $C_\ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $\beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of the Galactic $B$- and $E$-modes of 0.5. We show that even in the faintest dust-emitting regions there are no "clean" windows where primordial CMB $B$-mode polarization could be measured without subtraction of dust emission. Finally, we investigate the level of dust polarization in the BICEP2 experiment field. Extrapolation of the Planck 353GHz data to 150GHz gives a dust power $\ell(\ell+1)C_\ell^{BB}/(2\pi)$ of $1.32\times10^{-2}\mu$K$_{CMB}^2$ over the $40<\ell<120$ range; the statistical uncertainty is $\pm0.29$ and there is an additional uncertainty (+0.28,-0.24) from the extrapolation, both in the same units. This is the same magnitude as reported by BICEP2 over this $\ell$ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.
We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit LCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau=0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with only data from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z=7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Dz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z~10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit LCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau=0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with only data from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z=7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Dz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z~10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Δz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z ≃ 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (‘SO-Nominal’) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating (“Stage 3”) experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4. Construction of SO-Nominal is fully funded, and operations and data analysis are funded for part of the planned five-year observations. We will seek federal funding to complete the observations and analysis of SO-Nominal, at the $25M level. The SO has a low risk and cost efficient upgrade path – the 6 m LAT can accommodate almost twice the baseline number of detectors and the SATs can be duplicated at low cost. We will seek funding at the $75M level for an expansion of the SO (‘SO-Enhanced’) that fills the remaining focal plane in the LAT, adds three SATs, and extends operations by five years, substantially improving our science return. By this time SO may be operating as part of the larger CMB-S4 project. This white paper summarizes and extends material presented in, which describes the science goals of SO-Nominal, and which describe the instrument design.
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2$\mu$K-arcmin, with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects.
We study the statistical properties of interstellar dust polarization at high Galactic latitude, using the Stokes parameter Planck maps at 353 GHz. Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a model of the polarized dust foreground for cosmic microwave background component-separation procedures. Focusing on the southern Galactic cap, we examine the statistical distributions of the polarization fraction ($p$) and angle ($\psi$) to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. We relate patterns at large angular scales in polarization to the orientation of the mean (ordered) GMF towards Galactic coordinates $(l_0,b_0)=(70^\circ \pm 5^\circ,24^\circ \pm 5^\circ)$. The histogram of $p$ shows a wide dispersion up to 25 %. The histogram of $\psi$ has a standard deviation of $12^\circ$ about the regular pattern expected from the ordered GMF. We use these histograms to build a phenomenological model of the turbulent component of the GMF, assuming a uniform effective polarization fraction ($p_0$) of dust emission. To model the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of $N$ independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed $p$ and $\psi$ distributions using: a $p_0$ value of (26 $\pm$ 3)%; a ratio of 0.9 $\pm$ 0.1 between the strengths of the turbulent and mean components of the GMF; and a small value of $N$. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS.