Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: (i) identification of conserved and highly variable regions; (ii) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; (iii) in vitro DNA recombination of synthetic genes; and (iv) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering—guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
The crystal structure of the "ene" nicotinamide-dependent cyclohexenone reductase (NCR) from Zymomonas mobilis (PDB ID: 4A3U) has been determined in complex with acetate ion, FMN, and nicotinamide, to a resolution of 1.95 Å. To study the activity and enantioselectivity of this enzyme in the bioreduction of activated α,β-unsaturated alkenes, the rational design methods site- and loop-directed mutagenesis were applied. Based on a multiple sequence alignment of various members of the Old Yellow Enzyme family, eight single-residue variants were generated and investigated in asymmetric bioreduction. Furthermore, a structural alignment of various ene reductases predicted four surface loop regions that are located near the entrance of the active site. Four NCR loop variants, derived from loop-swapping experiments with OYE1 from Saccharomyces pastorianus, were analysed for bioreduction. The three enzyme variants, P245Q, D337Y and F314Y, displayed increased activity compared to wild-type NCR towards the set of substrates tested. The active-site mutation Y177A demonstrated a clear influence on the enantioselectivity. The loop-swapping variants retained reduction efficiency, but demonstrated decreased enzyme activity compared with the wild-type NCR ene reductase enzyme.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract The halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) catalyzes nucleophilic ring opening of epoxides with cyanide and azide. In the case of 2,2‐disubstituted epoxides, this reaction proceeds with excellent enantioselectivity (E values up to>200), which gives, by kinetic resolution, access to various enantiopure epoxides and β‐substituted tertiary alcohols ( ee up to 99 %). Since the enzyme has a broad substrate range and because these tertiary alcohols are difficult to prepare in other ways, HheC is an attractive biocatalyst for the production of β‐cyano and β‐azido tertiary alcohols.