The Gorilla Troops Optimizer (GTO) is a novel Metaheuristic Algorithm that was proposed in 2021. Its design was inspired by the lifestyle characteristics of gorillas, including migration to a known position, migration to an undiscovered position, moving toward the other gorillas, following silverback gorillas and competing with silverback gorillas for females. However, like other Metaheuristic Algorithms, the GTO still suffers from local optimum, low diversity, imbalanced utilization, etc. In order to improve the performance of the GTO, this paper proposes a modified Gorilla Troops Optimizer (MGTO). The improvement strategies include three parts: Beetle-Antennae Search Based on Quadratic Interpolation (QIBAS), Teaching–Learning-Based Optimization (TLBO) and Quasi-Reflection-Based Learning (QRBL). Firstly, QIBAS is utilized to enhance the diversity of the position of the silverback. Secondly, the teacher phase of TLBO is introduced to the update the behavior of following the silverback with 50% probability. Finally, the quasi-reflection position of the silverback is generated by QRBL. The optimal solution can be updated by comparing these fitness values. The performance of the proposed MGTO is comprehensively evaluated by 23 classical benchmark functions, 30 CEC2014 benchmark functions, 10 CEC2020 benchmark functions and 7 engineering problems. The experimental results show that MGTO has competitive performance and promising prospects in real-world optimization tasks.
An experimental protocol was developed to predict the service period of polyethylene pipes under high loads. This paper presents the results of field test of chimney demolition loading to polyethylene pipeline, and compared with the numerical simulation. Combined with the practical engineering situation, the ground impact load first propagates to the explosion-facing side of the pipeline, and the effect was found to decrease as the applied stress decreased, however, under high impact load, ring strain tends to be greater than axial strain. The test data such as vibration velocity and frequency are processed to determine the damage characteristics needed to protect the pipeline from damage. Finally, the safety assessment of pipeline under impact load was determined by yield criterion.
The dynamic response of buried high density polyethylene (HDPE) bellows under blasting seismic load was studied. First, the blasting test of buried pipeline was carried out by combining the blasting seismic test and dynamic strain test. Secondly, the dynamic response characteristics of buried pipeline under blasting seismic load were analyzed. Then, the characteristics of vibration velocity and dynamic strain distribution were studied. Finally, the pipe safety was evaluated based on the von Mises yield criterion, and the blasting vibration velocity control standard was proposed. The experimental results show that the vibration velocity of pipeline and ground and the dynamic strain of pipeline increase with the decrease of core distance and the increase of explosive quantity. The dominant frequency of blasting seismic wave is higher. The dominant frequency of pipeline is higher than the surface. Under the same blasting condition, the ground vibration velocity above the pipeline is generally higher than that of the pipeline. The peak axial strain on the back explosion side of the pipeline section is mainly tensile strain, and the peak circumferential strain on the front explosion side is mainly compressive strain. The vibration velocity of the pipeline can be safely controlled by 20 cm·s−1, and the pipeline is in a safe state.
The water storage and millions of immigrants work have a great impact on engineering geological condition which may cause slope instability in the Three Gorges Reservoir area, China. This paper presents regional assessment of landslide hazard from Zigui to Badong based on Light Detection and Ranging (LIDAR) data in combination with geological maps and landslides information of this area. Four essential parameters, including engineering rocks, slope, slope structure and water impact, are extracted from this data. The informative model is employed to create landslide hazard map. The result shows that informative model successfully identified the stable regions as well as instable reservoir banks. Reservoir water and engineering rocks are principle control on slope stability in this area. We also divided the study area into fourteen sections according to the landslide hazard map.