Background Co-morbidity of mood and anxiety disorders is common and often associated with greater illness severity. This study investigates clinical correlates and familiality of four anxiety disorders in a large sample of bipolar disorder (BP) and major depressive disorder (MDD) pedigrees. Method The sample comprised 566 BP families with 1416 affected subjects and 675 MDD families with 1726 affected subjects. Clinical characteristics and familiality of panic disorder, social phobia, specific phobia and obsessive-compulsive disorder (OCD) were examined in BP and MDD pedigrees with multivariate modeling using generalized estimating equations. Results Co-morbidity between mood and anxiety disorders was associated with several markers of clinical severity, including earlier age of onset, greater number of depressive episodes and higher prevalence of attempted suicide, when compared with mood disorder without co-morbid anxiety. Familial aggregation was found with co-morbid panic and OCD in both BP and MDD pedigrees. Specific phobia showed familial aggregation in both MDD and BP families, although the findings in BP were just short of statistical significance after adjusting for other anxiety co-morbidities. We found no evidence for familiality of social phobia. Conclusions Our findings suggest that co-morbidity of MDD and BP with specific anxiety disorders (OCD, panic disorder and specific phobia) is at least partly due to familial factors, which may be of relevance to both phenotypic and genetic studies of co-morbidity.
Abstract Background Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
Response to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients (N = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. PRSs for attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and schizophrenia (SCZ) were computed using lassosum and in a model including all three PRSs and other covariates, and the PRS of ADHD (β = -0.14; 95% confidence interval [CI]: -0.24 to -0.03; p value = 0.010) and MDD (β = -0.16; 95% CI: -0.27 to -0.04; p value = 0.005) predicted worse quantitative lithium response. A higher SCZ PRS was associated with higher rates of medication nonadherence (OR = 1.61; 95% CI: 1.34-1.93; p value = 2e-7). This study indicates that genetic risk for ADHD and depression may influence lithium treatment response. Interestingly, a higher SCZ PRS was associated with poor adherence, which can negatively impact treatment response. Incorporating genetic risk of ADHD, depression, and SCZ in combination with clinical risk may lead to better clinical care for patients with BD.
Abstract Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response — defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
Objective The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the “Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder” scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (κ)] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (κ = 0.66 and κ = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (ICC1 = 0.71 and ICC2 = 0.75, respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.
Abstract Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li ( p < 1 × 10 −3 ; FDR < 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common inflammatory/autoimmune processes, our findings strongly suggest that HLA-mediated low inflammatory background may contribute to the efficient response to Li in BD patients, while an inflammatory status overriding Li anti-inflammatory properties would favor a weak response.
Abstract Background Lithium is a first-line medication for bipolar disorder (BD), but only ~30% of patients respond optimally to the drug. Since genetic factors are known to mediate lithium treatment response, we hypothesized whether polygenic susceptibility to the spectrum of depression traits is associated with treatment outcomes in patients with BD. In addition, we explored the potential molecular underpinnings of this relationship. Methods Weighted polygenic scores (PGSs) were computed for major depressive disorder (MDD) and depressive symptoms (DS) in BD patients from the Consortium on Lithium Genetics (ConLi + Gen; n=2,586) who received lithium treatment. Lithium treatment outcome was assessed using the ALDA scale. Summary statistics from genome-wide association studies (GWAS) in MDD (130,664 cases and 330,470 controls) and DS (n=161,460) were used for PGS weighting. Associations between PGSs of depression traits and lithium treatment response were assessed by binary logistic regression. We also performed a cross-trait meta-GWAS, followed by Ingenuity ® Pathway Analysis. Outcomes BD patients with a low polygenic load for depressive traits were more likely to respond well to lithium, compared to patients with high polygenic load (MDD: OR =1.64 [95%CI: 1.26-2.15], lowest vs highest PGS quartiles; DS: OR=1.53 [95%CI: 1.18-2.00]). Associations were significant for type 1, but not type 2 BD. Cross-trait GWAS and functional characterization implicated voltage-gated potassium channels, insulin-related pathways, mitogen-activated protein-kinase (MAPK) signaling, and miRNA expression. Interpretation Genetic loading to depression traits in BD patients lower their odds of responding optimally to lithium. Our findings support the emerging concept of a lithium-responsive biotype in BD. Funding See attached details
We sought to determine if postpartum mood symptoms and depressive episodes exhibit familial aggregation in bipolar I pedigrees.A total of 1,130 women were interviewed with the Diagnostic Interview for Genetic Studies as part of the National Institute of Mental Health (NIMH) Genetics Initiative Bipolar Disorder Collaborative Study and were asked whether they had ever experienced mood symptoms within four weeks postpartum. Women were also asked whether either of two major depressive episodes described in detail occurred postpartum. We examined the odds of postpartum mood symptoms in female siblings, who had previously been pregnant and had a diagnosis of bipolar I, bipolar II, or schizoaffective (bipolar type) disorders (n = 303), given one or more relatives with postpartum mood symptoms.The odds ratio for familial aggregation of postpartum mood symptoms was 2.31 (p = 0.011) in an Any Mood Symptoms analysis (n = 304) and increased to 2.71 (p = 0.005) when manic symptoms were excluded, though this was not significantly different from the Any Mood Symptoms analysis. We also examined familial aggregation of postpartum major depressive episodes; however, the number of subjects was small.Limitations of the study include the retrospective interview, the fact that the data were collected for other purposes and the inability to control for such factors as medication use. Taken together with previous studies, these data provide support for the hypothesis that there may be a genetic basis for the trait of postpartum mood symptoms generally and postpartum depressive symptoms in particular in women with bipolar disorder. Genetic linkage and association studies incorporating this trait are warranted.