The synthesis and tumor cell growth inhibition by doxazolidine carbamate prodrugs are reported. The carbamates were designed for selective hydrolysis by one or more human carboxylesterases to release doxazolidine (Doxaz), the formaldehyde-oxazolidine of doxorubicin that cross-links DNA to trigger cell death. Simple butyl and pentyl, but not ethyl, carbamate prodrugs inhibited the growth of cancer cells that overexpress carboxylesterase CES1 (hCE1) and CES2 (hiCE). Relative CES1 and CES2 expression levels were determined by reverse transcription of the respective mRNAs, followed by polymerase chain reaction amplification. More complex structures with a p-aminobenzyl alcohol (PABA) self-eliminating spacer showed better growth inhibition (IC50=50 nM for Hep G2 liver cancer cells) while exhibiting reduced toxicity toward rat cardiomyocytes, relative to the parent drug doxorubicin. Pentyl 4-(N-doxazolidinylcarbonyloxymethyl)phenylcarbamate, the lead compound for further investigation, appears to be activated in Hep G2 cells that express both CES1 and CES2.
Utilizing our lateral metalation coupled with Jacobsen's catalytic asymmetric amino nitrile synthesis, we have demonstrated the ability to synthesize isoxazole-containing amino acid glutamate analogues in high yield and high enantiomeric excesses. Chiral centers α or β at the C-5 position do not detract from diastereoselectivity of the Jacobsen−Strecker reaction.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
The Macrophage-Inducible C-type Lectin receptor (Mincle) plays a critical role in innate immune recognition and pathology, and therefore represents a promising target for vaccine adjuvants. Innovative trehalose-based Mincle agonists with improved pharmacology and potency may prove useful in the development of Th17-mediated adaptive immune responses. Herein, we report on in vitro and in silico investigations of specific Mincle ligand-receptor interactions required for the effective receptor engagement and activation of Th17-polarizing cytokines. Specifically, we employed a library of trehalose benzoate scaffolds, varying the degree of aryl lipidation and regiochemistry that produce inflammatory cytokines in a Mincle-dependent fashion. In vitro interleukin-6 (IL-6) cytokine production by human peripheral blood mononuclear cells (hPBMCs) indicated that the lipid regiochemistry is key to potency and maximum cytokine output, with the tri-substituted compounds inducing higher levels of IL-6 in hPBMCs than the di-substituted derivatives. Additionally, IL-6 production trended higher after stimulation with compounds that contained lipids ranging from five to eight carbons long, compared to shorter (below five) or longer (above eight) carbon chains, across all the substitution patterns. An analysis of the additional cytokines produced by hPBMCs revealed that compound
Abstract We have reported the synthesis and biological evaluation of a prodrug to a doxorubicin active metabolite. Under physiologic conditions, release of the active metabolite, a conjugate of doxorubicin with formaldehyde, occurs with a half-life of 1 hour. To direct this prodrug to tumor, we designed two conjugates of the prodrug, doxsaliform, with the αvβ3-targeting peptides, CDCRGDCFC (RGD-4C) and cyclic-(N-Me-VRGDf) (Cilengitide). We now report the synthesis of these doxsaliform-peptide conjugates and their evaluation using MDA-MB-435 cancer cells. A hydroxylamine ether tether was used to attach 5″-formyldoxsaliform to RGD-4C in its acyclic form via an oxime functional group. The construct acyclic-RGD-4C-doxsaliform showed good binding affinity for αvβ3 in the vitronection cell adhesion assay (IC50 = 10 nmol/L) and good growth inhibition of MDA-MB-435 breast cancer cells (IC50 = 50 nmol/L). In its bicyclic forms, RGD-4C showed less affinity for αvβ3 and significantly less water solubility. Cyclic-(N-Me-VRGDf) was modified by substitution of d-4-aminophenylalanine for d-phenylalanine to provide a novel attachment point for doxsaliform. The conjugate, cyclic-(N-Me-VRGDf-NH)-doxsaliform, maintained a high affinity for αvβ3 (IC50 = 5 nmol/L) in the vitronectin cell adhesion assay relative to the peptide bearing only the tether (0.5 nmol/L). The IC50 for growth inhibition of MDA-MB-435 cells was 90 nmol/L. Flow cytometry and growth inhibition experiments suggest that the complete drug construct does not penetrate through the plasma membrane, but the active metabolite does on release from the targeting group. These drug conjugates could have significantly reduced side effects and are promising candidates for in vivo evaluation in tumor-bearing mice.
Pseudomonas aeruginosa (Pa), a WHO priority 1 pathogen, resulted in approximately 559,000 deaths globally in 2019. Pa has a multitude of host-immune evasion strategies that enhance Pa virulence. Most clinical isolates of Pa are infected by a phage called Pf that has the ability to misdirect the host-immune response and provide structural integrity to biofilms. Previous studies demonstrate that vaccination against the coat protein (CoaB) of Pf4 virions can assist in the clearance of Pa from the dorsal wound model in mice. Here, a consensus peptide was derived from CoaB and conjugated to cross-reacting material 197 (CRM197). This conjugate was adjuvanted with a novel synthetic Toll-like receptor agonist (TLR) 4 agonist, INI-2002, and used to vaccinate mice. Mice vaccinated with CoaB-CRM conjugate and INI-2002 developed high anti-CoaB peptide-specific IgG antibody titers. Direct binding of the peptide-specific antibodies to whole-phage virus particles was demonstrated by ELISA. Furthermore, a functional assay demonstrated that antibodies generated from vaccinated mice disrupted the replicative cycle of Pf phages. The use of an adjuvanted phage vaccine targeting Pa is an innovative vaccine strategy with the potential to become a new tool targeting multi-drug-resistant Pa infections in high-risk populations.