Abstract Extremely limited research exploring the photocatalytic potential of main group metals, such as aluminum, gallium, and tin, has been undertaken due to their weak light harvesting properties. This study reports the efficient transformation of sugars to 5‐hydroxymethylfurfural (HMF) with high yield employing an original heterogeneous photocatalyst comprising a gallium(III) complex immobilized on an alumina support. Under visible light irradiation, the reaction rate of HMF formation is ~143 times higher than the equivalent thermal reaction performed in the absence of light. The turnover number (TON) of the heterogeneous gallium(III) photocatalyst was as high as 1500, which was ca. two orders of magnitude higher than the TON of the homogeneous gallium(III) system. It is proposed that photoirradiation significantly enhances the Lewis acidity of the catalyst by forming a semi‐coordination state between gallium(III) and N‐donor ligands, enabling the increased interaction of reactant sugar molecules with gallium(III) active sites. Consistent with this, the photoresponsive coordination of the gallium(III) complex and the abstraction of the hydroxy group by the metal under irradiation with visible light is observed by NMR spectroscopy for the first time. These findings demonstrate that efficient photocatalysts derived from the main group elements can facilitate biomass conversion using visible light.
Abstract Drosophila can rapidly and precisely detect changes in light in their surroundings and achieve acute perception of motion information with high energy efficiency and adaptivity owing to the cooperation of “ON” channel and the “OFF” channel in its visual system. Optical controlled bidirectional synaptic behavior of neuromorphic device is important for modeling parallel processing channels of Drosophila's visual system. In this study, an ambipolar transistor utilizing a bilayer architecture composed of p‐type pentacene and n‐type C 60 as semiconductors is developed, with near‐infrared (NIR) PbS quantum dots serving as the charge‐trapping layer. This design enables a gate‐tunable positive and negative photoresponse, driven by photogating and photovoltaic effects at visible and NIR wavelengths. When regulated by a negative gate voltage, the device exhibits a suppressed photocurrent relaxation time exceeding 1000 s, demonstrating stable long‐term inhibitory characteristics. Consequently, high‐contrast excitatory and inhibitory synapses facilitate orientation and motion detection. Identification accuracies of up to 94.8% for motion direction and 98.1% for dynamic gestures are achieved. Practical applications such as intelligent monitoring and human–computer interaction stand to benefit significantly from these findings.
Product selectivity of alkyne hydroamination over catalytic Au2 Co alloy nanoparticles (NPs) can be made switchable by a light-on/light-off process, yielding imine (cross-coupling product of aniline and alkyne) under visible-light irradiation, but 1,4-diphenylbutadiyne in the dark. The low-flux light irradiation concentrates aniline on the catalyst, accelerating the catalytic cross-coupling by several orders of magnitude even at a very low overall aniline concentrations (1.0×10-3 mol L-1 ). A tentative mechanism is that Au2 Co NPs absorb light, generating an intense fringing electromagnetic field and hot electrons. The sharp field-gradient (plasmonic optical force) can selectively enhance adsorption of light-polarizable aniline molecules on the catalyst. The light irradiation thereby alters the aniline/alkyne ratio at the NPs surface, switching product selectivity. This represents a new paradigm to modify a catalysis process by light.
Understanding passengers' transfer behavior and analyzing their transfer characteristics are crucial for improving the service level of public transportation systems. This paper uses smart card data collected in Shenzhen, China, combined with GIS data, including bus and metro routes information, to analyze the spatial-temporal behavior characteristics of passengers transferring from metros to buses. Specifically, this paper uses the Latent Dirichlet Allocation (LDA) model, which allows for the interaction between spatial and temporal patterns, to simultaneously analyze passengers' transfer behavior from both time and space dimensions. The findings reveal notable variances in these behaviors between weekdays and weekends, offering insights into passenger profiles. Moreover, the findings identify transfer bottlenecks at specific times and locations, which can inform targeted management measures to reduce resource waste. These insights are instrumental in refining the efficacy of public transport systems.