A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking.
Background Conditioned cues can elicit drug‐seeking in both humans and rodents. The majority of preclinical research has employed excitatory conditioned cues (stimuli present throughout the availability of a reinforcer), but oral consumption of alcohol is similar to a conditional stimuli (presence of stimuli is paired with the delivery of the reinforcer) approach. The current experiments attempted to determine the effects of conditional stimuli (both excitatory and inhibitory) on the expression of context‐induced ethanol (Et OH )‐seeking. Methods Alcohol‐preferring (P) rats self‐administered Et OH and water in standard 2‐lever operant chambers. A flavor was added to the Et OH solution ( CS +) during the Et OH self‐administration sessions. After 10 weeks, rats underwent extinction training (7 sessions), followed by a 2‐week home cage period. Another flavor was present during extinction ( CS −). Rats were exposed to a third flavor in a non‐drug‐paired environment ( CS 0 ). Et OH ‐seeking was assessed in the presence of no cue, CS +, CS −, or CS 0 in the dipper previously associated with Et OH self‐administration (no Et OH available). Rats were maintained a week in their home cage before being returned to the operant chambers with access to Et OH (flavored with no cue, CS +, CS −, or CS 0 ). Results The results indicated that the presence of the CS + enhanced Et OH ‐seeking, while the presence of the CS − suppressed Et OH ‐seeking. Similarly, adding the CS − flavor to 15% Et OH reduced responding for Et OH while the CS + enhanced responding for Et OH during relapse testing. Conclusions Overall, the data indicate that conditional stimuli are effective at altering both Et OH ‐seeking behavior and Et OH ‐relapse drinking.
A consistent preclinical finding is that exposure to alcohol during adolescence produces a persistent hyperdopaminergic state during adulthood. The current experiments determine that effects of Adolescent Intermittent Ethanol (AIE) on the adult neurochemical response to EtOH administered directly into the mesolimbic dopamine system, alterations in dendritic spine and gene expression within the nucleus accumbens shell (AcbSh), and if treatment with the HDACII inhibitor TSA could normalize the consequences of AIE. Rats were exposed to the AIE (4 g/kg ig; 3 days a week) or water (CON) during adolescence, and all testing occurred during adulthood. CON and AIE rats were microinjected with EtOH directly into the posterior VTA and dopamine and glutamate levels were recorded in the AcbSh. Separate groups of AIE and CON rats were sacrificed during adulthood and Taqman arrays and dendritic spine morphology assessments were performed. The data indicated that exposure to AIE resulted in a significant leftward and upward shift in the dose-response curve for an increase in dopamine in the AcbSh following EtOH microinjection into the posterior VTA. Taqman array indicated that AIE exposure affected the expression of target genes (
There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of α2 and β4. Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets.
Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed – including the mesocorticolimbic (MCL) dopamine system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT-7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT-7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT-7 receptor as a novel target for treating addiction.