Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.
MINT‐6796998: SOCS3 (uniprotkb:O35718) physically interacts (MI:0218) with MAP1S (uniprotkb:Q66K74) by anti bait coimmunoprecipitation (MI:0006) MINT‐6796957: SOCS3 (uniprotkb:O14543) physically interacts (MI:0218) with MAP1S (uniprotkb:Q66K74) by pull down (MI:0096) MINT‐6796909, MINT‐6796875, MINT‐6796894, MINT‐6796936: SOCS3 (uniprotkb:O14543) physically interacts (MI:0218) with MAP1S (uniprotkb:Q66K74) by two hybrid (MI:0018) MINT‐6797017: MAP1S (uniprotkb:Q8C052) physically interacts (MI:0218) with SOCS3 (uniprotkb:O35718) by anti bait coimmunoprecipitation (MI:0006) MINT‐6796979: MAP1S (uniprotkb:Q66K74) and SOCS3 (uniprotkb:O14543) colocalize (MI:0403) by fluorescence microscopy (MI:0416)
Hepatitis B virus (HBV) replication is controlled by four promoters (preS1, preS2, Cp, and Xp) and two enhancers (EnhI and EnhII). EnhII stimulates Cp activity to regulate the transcriptions of precore, core, polymerase, and pregenomic RNAs, and therefore, EnhII/Cp is essential for the regulation of HBV replication. This study revealed a distinct mechanism underlying the suppression of EnhII/Cp activation and HBV replication. On the one hand, the sex determining region Y box2 (SOX2), a transcription factor, is induced by HBV. On the other hand, SOX2, in turn, represses the expression levels of HBV RNAs, HBV core-associated DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg), thereby playing an inhibitory role during HBV replication. Further studies indicated that SOX2 bound to the EnhII/Cp DNA and repressed the promoter activation. With the deletion of the high mobility group (HMG) domain, SOX2 loses the ability to repress EnhII/Cp activation, viral RNA transcription, HBV core-associated DNA replication, HBsAg and HBeAg production, as well as fails to enter the nucleus, demonstrating that the HMG domain is required for the SOX2-mediated repression of HBV replication. Moreover, SOX2 represses HBsAg and HBeAg secretion in BALB/c mice sera, and attenuates HBV 3.5 kb RNA transcription and hepatitis B virus core protein (HBc) production in the liver tissues, demonstrating that SOX2 suppresses HBV replication in mice. Furthermore, the results revealed that the HMG domain was required for SOX2-mediated repression of HBV replication in the mice. Taken together, the above facts indicate that SOX2 acts as a new host restriction factor to repress HBV replication by binding to the viral EnhII/Cp and inhibiting the promoter activation through the HMG domain.
A total of 1844 patients with hand, foot, and mouth disease (HFMD), most of them were children of age 1–3-year-old, in Central China were hospitalized from 2011 to 2012. Among them, 422 were infected with coxsackievirus A16 (CVA16), 334 were infected with enterovirus 71 (EV71), 38 were co-infected with EV71 and CVA16, and 35 were infected with other enteroviruses. Molecular epidemiology analysis revealed that EV71 and CVA16 were detected year-round, but EV71 circulated mainly in July and CVA16 circulated predominantly in November, and incidence of HFMD was reduced in January and February and increased in March. Clinical data showed that hyperglycemia and neurologic complications were significantly higher in EV71-infected patients, while upper respiratory tract infection and C-reactive protein were significantly higher in CVA16-associated patients. 124 EV71 and 80 CVA16 strains were isolated, among them 56 and 68 EV71 strains were C4a and C4b, while 25 and 55 CVA16 strains were B1a and B1b, respectively. Similarity plots and bootscan analyses based on entire genomic sequences revealed that the three C4a sub-genotype EV71 strains were recombinant with C4b sub-genotype EV71 in 2B–2C region, and the three CVA16 strains were recombinant with EV71 in 2A–2B region. Thus, CVA16 and EV71 were the major causative agents in a large HFMD outbreak in Central China. HFMD incidence was high for children among household contact and was detected year-round, but outbreak was seasonal dependent. CVA16 B1b and EV71 C4b reemerged and caused a large epidemic in China after a quiet period of many years. Moreover, EV71 and CVA16 were co-circulated during the outbreak, which may have contributed to the genomic recombination between the pathogens. It should gain more attention as there may be an upward trend in co-circulation of the two pathogens globally and the new role recombination plays in the emergence of new enterovirus variants.
Abstract The stimulation of P2X7 receptor by extracellular ATP leads to activation of NLRP3 inflammasome and release of pro-inflammatory cytokines. Here, we reveal a distinct mechanism by which Paxillin promotes ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. Extracellular ATP induces Paxillin phosphorylation and facilitates Paxillin-NLRP3 interaction. Interestingly, Paxillin enhances NLRP3 deubiquitination and activates NLRP3 inflammasome upon ATP treatment and K + efflux. Moreover, we reveal that UPS13 is a key enzyme for Paxillin-mediated NLRP3 deubiquitination upon ATP treatment. Notably, extracellular ATP promotes Paxillin and NLRP3 migration from cytosol to plasma membrane and facilitates P2X7-Paxillin interaction and Paxillin-NLRP3 association, resulting in the formation of P2X7-Paxillin-NLRP3 complex. Functionally, Paxillin is essential for ATP-induced NLRP3 inflammasome activation in mouse BMDMs and BMDCs as we as in human PBMCs and THP-1-differentiated macrophages. Thus, Paxillin plays key roles in ATP-induced activation of P2X7 receptor and NLRP3 inflammasome by facilitating the formation of the P2X7-Paxillin-NLRP3 complex.
As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.
Hepatitis B virus (HBV) infection may cause acute hepatitis B, chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV evades host immunity and maintains chronic infection are largely unknown. Here, we revealed that matrix metalloproteinase 9 (MMP-9) is activated in peripheral blood mononuclear cells (PBMCs) of HBV-infected patients, and HBV stimulates MMP-9 expression in macrophages and PBMCs isolated from healthy individuals. MMP-9 plays important roles in the breakdown of the extracellular matrix and in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. MMP-9 also regulates respiratory syncytial virus (RSV) replication, but the mechanism underlying such regulation is unknown. We further demonstrated that MMP-9 facilitates HBV replication by repressing the interferon (IFN)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, IFN action, STAT1/2 phosphorylation, and IFN-stimulated gene (ISG) expression. Moreover, MMP-9 binds to type I IFN receptor 1 (IFNAR1) and facilitates IFNAR1 phosphorylation, ubiquitination, subcellular distribution, and degradation to interfere with the binding of IFANR1 to IFN-α. Thus, we identified a novel positive-feedback regulation loop between HBV replication and MMP-9 production. On one hand, HBV activates MMP-9 in infected patients and leukocytes. On the other hand, MMP-9 facilitates HBV replication through repressing IFN/JAK/STAT signaling, IFNAR1 function, and IFN-α action. Therefore, HBV may take the advantage of MMP-9 function to establish or maintain chronic infection.IMPORTANCE Hepatitis B virus (HBV) infection may cause chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC). However, the mechanisms by which HBV maintains chronic infection are largely unknown. Matrix metalloproteinase 9 (MMP-9) plays important roles in the facilitation of tumor progression, invasion, metastasis, and angiogenesis. However, the effects of MMP-9 on HBV replication and pathogenesis are not known. This study reveals that MMP-9 expression is activated in patients with CHB, and HBV stimulates MMP-9 production in PBMCs and macrophages. More interestingly, MMP-9 in turn promotes HBV replication through suppressing IFN-α action. Moreover, MMP-9 interacts with type I interferon receptor 1 (IFNAR1) to disturb the binding of IFN-α to IFNAR1 and facilitate the phosphorylation, ubiquitination, subcellular distribution, and degradation of IFNAR1. Therefore, these results discover a novel role of MMP-9 in viral replication and reveal a new mechanism by which HBV evades host immunity to maintain persistent infection.
Circulating in China and 75 other countries and territories, the ongoing COVID-19 outbreak has caused devastating mortality and posed a great threat to public health. However, efforts to identify effectively supportive therapeutic drugs and treatments has been hampered by our limited understanding of host immune response for this fatal disease. To characterize the transcriptional signatures of host inflammatory response to SARS-CoV-2 infection, we carried out transcriptome sequencing of the RNAs isolated from the bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) specimens of COVID-19 patients. Our results reveal distinct host inflammatory cytokine profiles to SARS-CoV-2 infection in patients, and highlight the association between COVID-19 pathogenesis and excessive cytokine release such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and CCL4/MIP1B. Furthermore, SARS-CoV-2 induced activation of apoptosis and P53 signaling pathway in lymphocytes may be the cause of patients' lymphopenia. The transcriptome dataset of COVID-19 patients would be a valuable resource for clinical guidance on anti-inflammatory medication and understanding the molecular mechansims of host response.Funding: This study was supported by Special Fund for COVID-19 Research of Wuhan University, National Science and Technology Major Project (#2018ZX10733403), China NSFC grants (#81672008, 31871316), Hubei Natural Science Foundation (#2018CFA035), Basic Scientific Research Foundation of Central Universities (#2042019gf0026), Ministry of Science and Technology of China, the National Mega Project on Major Infectious Disease Prevention (#2017ZX10103005) and National Key Research and Development Program of China (#2018YFE0204500). Declaration of Interest: The authors declare no competing interests.Ethical Approval: This study was approved by the Ethics Committee of the Zhongnan Hospital of Wuhan University. The RNA-seq analyses of BALF samples and PBMC were performed on existing samples collected during standard diagnostic tests, posing no extra burden to patients.