We consider the task of solving generic inverse problems, where one wishes to determine the hidden parameters of a natural system that will give rise to a particular set of measurements. Recently many new approaches based upon deep learning have arisen generating impressive results. We conceptualize these models as different schemes for efficiently, but randomly, exploring the space of possible inverse solutions. As a result, the accuracy of each approach should be evaluated as a function of time rather than a single estimated solution, as is often done now. Using this metric, we compare several state-of-the-art inverse modeling approaches on four benchmark tasks: two existing tasks, one simple task for visualization and one new task from metamaterial design. Finally, inspired by our conception of the inverse problem, we explore a solution that uses a deep learning model to approximate the forward model, and then uses backpropagation to search for good inverse solutions. This approach, termed the neural-adjoint, achieves the best performance in many scenarios.
We consider the task of solving generic inverse problems, where one wishes to determine the hidden parameters of a natural system that will give rise to a particular set of measurements. Recently many new approaches based upon deep learning have arisen generating impressive results. We conceptualize these models as different schemes for efficiently, but randomly, exploring the space of possible inverse solutions. As a result, the accuracy of each approach should be evaluated as a function of time rather than a single estimated solution, as is often done now. Using this metric, we compare several state-of-the-art inverse modeling approaches on four benchmark tasks: two existing tasks, one simple task for visualization and one new task from metamaterial design. Finally, inspired by our conception of the inverse problem, we explore a solution that uses a deep learning model to approximate the forward model, and then uses backpropagation to search for good inverse solutions. This approach, termed the neural-adjoint, achieves the best performance in many scenarios.
We propose and show the efficacy of a new method to address generic inverse problems. Inverse modeling is the task whereby one seeks to determine the hidden parameters of a natural system that produce a given set of observed measurements. Recent work has shown impressive results using deep learning, but we note that there is a trade-off between model performance and computational time. For some applications, the computational time at inference for the best performing inverse modeling method may be overly prohibitive to its use. In seeking a faster, high-performing model, we present a new method that leverages multiple manifolds as a mixture of backward (e.g., inverse) models in a forward-backward model architecture. These multiple backwards models all share a common forward model, and their training is mitigated by generating training examples from the forward model. The proposed method thus has two innovations: 1) the multiple Manifold Mixture Network (MMN) architecture, and 2) the training procedure involving augmenting backward model training data using the forward model. We demonstrate the advantages of our method by comparing to several baselines on four benchmark inverse problems, and we furthermore provide analysis to motivate its design.
The adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs). Large numbers of images are needed to accurately quantify cycling events using microscopy-based methods. CardioCount is a new deep learning–based pipeline to rigorously score nuclei in microscopic images. When applied to a repository of 368,434 human microscopic images, we found evidence of coupled growth between CMs and cardiac endothelial cells in the adult human heart. Additionally, we found that vascular rarefaction and CM hypertrophy are interrelated in end-stage heart failure. CardioCount is available for use via GitHub and via Google Colab for users with minimal machine learning experience.
Emission Trading Schemes(ETS) has been implemented in electricity industrial activities. A large number of existing and potential GENCO are subject to ETS and targeted for emission reduction. A dynamic decision making model is proposed to deal with the multimarket trading problem for GENCO. During each trading period, the operation of GENCO is divided into production process and trading process. These two processes are considered dynamic and stochastic so that the results of decision making are given process by process for each planning period. To solve the multi-period stochastic optimization problem, Differential Evolution(DE) algorithm is adopted to give the results of each period. Comparisons between different scenarios show that the proposed model can provide good tradeoff between profit-making and emission reduction.
Deep neural networks are empirically derived systems that have transformed research methods and are driving scientific discovery. Artificial electromagnetic materials, such as electromagnetic metamaterials, photonic crystals, and plasmonics, are research fields where deep neural network results evince the data driven approach; especially in cases where conventional computational and optimization methods have failed. We propose and demonstrate a deep learning method capable of finding accurate solutions to ill-posed inverse problems, where the conditions of existence and uniqueness are violated. A specific example of finding the metasurface geometry which yields a radiant exitance matching the external quantum efficiency of gallium antimonide is demonstrated.
Deep learning (DL) inverse techniques have increased the speed of artificial electromagnetic material (AEM) design and improved the quality of resulting devices. Many DL inverse techniques have succeeded on a number of AEM design tasks, but to compare, contrast, and evaluate assorted techniques it is critical to clarify the underlying ill-posedness of inverse problems. Here we review state-of-the-art approaches and present a comprehensive survey of deep learning inverse methods and invertible and conditional invertible neural networks to AEM design. We produce easily accessible and rapidly implementable AEM design benchmarks, which offers a methodology to efficiently determine the DL technique best suited to solving different design challenges. Our methodology is guided by constraints on repeated simulation and an easily integrated metric, which we propose expresses the relative ill-posedness of any AEM design problem. We show that as the problem becomes increasingly ill-posed, the neural adjoint with boundary loss (NA) generates better solutions faster, regardless of simulation constraints. On simpler AEM design tasks, direct neural networks (NN) fare better when simulations are limited, while geometries predicted by mixture density networks (MDN) and conditional variational auto-encoders (VAE) can improve with continued sampling and re-simulation.
Background: Because the adult mammalian heart harbors minute levels of cycling cardiomyocytes (CMs), large numbers of images are needed to accurately quantify cycling events using microscopy-based methods. Objectives: Manual curation for rare events such as cardiomyocyte cycling can be impractical for large datasets. We sought to develop a computational pipeline that allows for objective and consistent scoring of nuclei counts in microscopic images of cardiac tissue.Methods: Here, we have developed a deep learning-based pipeline, called CardioCount, that allows for objective and consistent scoring of nuclei counts in microscopic images of cardiac tissue. Our pipeline utilizes U-Net based models to score CM, cardiac endothelial cell (CEC), and cycling nuclei number. Results: We show that CardioCount is highly accurate for widely used immunofluorescent assays. When applied to a repository of 368,434 microscopic images of human myocardium, we find that CM and CEC density proportionally decrease in the failing heart, suggesting that vascular rarefaction and CM hypertrophy are inter-related. Contrary to prior work, we find that CM cycling is not enhanced with mechanical unloading, although this may reflect differing patient populations. Interestingly, when present, levels of CM cycling are associated with levels of CEC cycling, suggestive of coupled growth of CMs and CECs in the adult human heart. Conclusions: CardioCount can accurately score cardiac images from diverse microscopy set-ups and from cardiac tissue of other species. CardioCount is available for use via a GitHub repository for experienced users and via Google Colab for users with minimal machine learning experience.
Abstract Accurate geospatial information about the causes and consequences of climate change, including energy systems infrastructure, is critical to planning climate change mitigation and adaptation strategies. When up-to-date spatial data on infrastructure is lacking, one approach to fill this gap is to learn from overhead imagery using deep-learning-based object detection algorithms. However, the performance of these algorithms can suffer when applied to diverse geographies, which is a common case. We propose a technique to generate realistic synthetic overhead images of an object (e.g., a generator) to enhance the ability of these techniques to transfer across diverse geographic domains. Our technique blends example objects into unlabeled images from the target domain using generative adversarial networks. This requires minimal labeled examples of the target object and is computationally efficient such that it can be used to generate a large corpus of synthetic imagery. We show that including these synthetic images in the training of an object detection model improves its ability to generalize to new domains (measured in terms of average precision) when compared to a baseline model and other relevant domain adaptation techniques.
All-dielectric metasurfaces exhibit exotic electromagnetic responses, similar to those obtained with metal-based metamaterials. Research in all-dielectric metasurfaces currently uses relatively simple unit-cell designs, but increased geometrical complexity may yield even greater scattering states. Although machine learning has recently been applied to the design of metasurfaces with impressive results, the much more challenging task of finding a geometry that yields a desired spectra remains largely unsolved. We propose and demonstrate a method capable of finding accurate solutions to ill-posed inverse problems, where the conditions of existence and uniqueness are violated. A specific example of finding the metasurface geometry which yields a radiant exitance matching the external quantum efficiency of gallium antimonide is demonstrated. We also show how the neural-adjoint method can intelligently grow the design search space to include designs that increasingly and accurately approximate the desired scattering response. The neural-adjoint method is not restricted to the case demonstrated and may be applied to plasmonics, photonic crystal, and other artificial electromagnetic materials.