The rational modulation of metal catalysts with tailorable valence and redox properties is a promising strategy for further improving their catalytic performance. Herein, an environment-friendly grafting and thermal strategy was adopted to immobilize copper oxides nanoparticles on carbon nanofiber (CuOx/CF). Benefiting from the defect-rich surface and valence-mixed composition of the CuOx species, the optimized sample CuOx/CF-3 exhibits superb activity for the catalytic reduction of toxic nitrophenols. The complete conversion took only 1 min and an outstanding rate constant (k) of 112.7 × 10˗3 s˗1 was achieved under mild conditions (25 °C and 1 atm). Kinetic and recycle experiments demonstrated that the whole catalytic process obeys a pseudo-order kinetic, and the catalyst could maintain high conversion even after 13 successive recycles. These results demonstrate that CuOx/CF-3 is an alternative catalyst to noble metals, providing superb catalytic efficiency and stability in the reduction of toxic nitrophenols, and it can be expanded to develop other noble-metal-free catalysts for various applications.
The paper aimed to discuss the ebb phenomenon happened after the evaluation of lab.By way of establishment of guideline,system and work procedure of evaluation lab in long-term system and the practice of the look back examination system it will further confirm,deepen and develop the achievement of lab evaluation.Meanwhile,it will be helpful for the sustainable development for lab and cultivation of excellent talents in the new century.