The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit,
ABSTRACT Antiangiogenic therapy began as an effort to inhibit VEGF signaling, which was thought to be the sole factor driving tumor angiogenesis. It has become clear that there are more pro-angiogenic growth factors that can substitute for VEGF during tumor vascularization. This has led to the development of multi-kinase inhibitors which simultaneously target multiple growth factor receptors. These inhibitors perform better than monotherapies yet to date no multi-kinase inhibitor targets all receptors known to be involved in pro-angiogenic signaling and resistance inevitably occurs. Given the large number of pro-angiogenic growth factors identified, it may be impossible to simultaneously target all pro-angiogenic growth factor receptors. Here we search for kinase targets, some which may be intracellularly localized, that are critical in endothelial cell proliferation irrespective of the growth factor used. We develop a quantitative endothelial cell proliferation assay and combine it with “kinome regression” or KIR, a recently developed method capable of identifying kinases that influence a quantitative phenotype. We report the kinases implicated by KIR and provide orthogonal evidence of their importance in endothelial cell proliferation. Our approach may point to a new strategy to develop a more complete anti-angiogenic blockade.
Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1, high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner.
Antiangiogenic therapy began as an effort to inhibit VEGF signaling, which was thought to be the sole factor driving tumor angiogenesis. It has become clear that there are more pro-angiogenic growth factors that can substitute for VEGF during tumor vascularization. This has led to the development of multi-kinase inhibitors which simultaneously target multiple growth factor receptors. These inhibitors perform better than monotherapies yet to date no multi-kinase inhibitor targets all receptors known to be involved in pro-angiogenic signaling and resistance inevitably occurs. Given the large number of pro-angiogenic growth factors identified, it may be impossible to simultaneously target all pro-angiogenic growth factor receptors. Here we search for kinase targets, some which may be intracellularly localized, that are critical in endothelial cell proliferation irrespective of the growth factor used. We develop a quantitative endothelial cell proliferation assay and combine it with “kinome regression” or KIR, a recently developed method capable of identifying kinases that influence a quantitative phenotype. We report the kinases implicated by KIR and provide orthogonal evidence of their importance in endothelial cell proliferation. Our approach may point to a new strategy to develop a more complete anti-angiogenic blockade.
The mitotic cell cycle is fundamental to eukaryotic life. In mitosis, replicated chromosomes are segregated to form two new nuclei. This is essential to ensure the maintenance of chromosome number between parent and daughter cells. In higher eukaryotes, numerous cytological changes occur to facilitate the separation of the genetic material: the nuclear envelope breaks down, the mitotic spindle assembles, and the cell rounds-up. There is a well-conserved control network that regulates these processes to bring about the entry into mitosis, the separation of the genetic material, and the reversal of these processes during mitotic exit. To build a coherent model of these regulatory networks requires us to write the biochemical reactions in mathematical form. The work in this Thesis pertains to three fundamental switches: entry into mitosis, the metaphase-to-anaphase transition, and exit from mitosis. I present three studies from a systems-level perspective. The first investigates a novel bistable mechanism controlling mitotic entry/exit in vitro using purified proteins. Dephosphorylation of Greatwall kinase by the phosphatase PP2A-B55 creates a double negative feedback loop that gives a bistable system response with respect to cyclin-dependent kinase 1 (Cdk1) activity. The second looks at hysteresis between mitotic entry and mitotic exit in HeLa cells. Hysteresis persists when either of the regulatory loops of Cdk1 or its counter-acting phosphatase PP2A-B55 is removed, but is diminished when they are both removed. Finally, the regulation of separase in the metaphase-to-anaphase transition is analysed. Separase that is liberated from securin inhibition is isomerised by Pin1 into a conformation that can bind to cyclin B1. This binding peaks after separase has cleaved cohesin and initiated anaphase.
Abstract Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1 , high levels of antisense transcription alters sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability, which is also a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner. Abstract Figure Graphical Abstract In this work, Brown et al. provide a mechanistic understanding of the effect of antisense transcription on the production and fate of sense transcripts. Antisense transcription buffers genes against the action of the Set3 lysine deacetylase, thus altering rates of transcript production, processing and stability. Conserved antisense transcription-dependent chromatin architecture near promoters Antisense transcription alters sense transcription dynamics and transcript stability Antisense transcription functions in a chromatin-dependent manner Increased acetylation by set3Δ mimics high antisense transcriptional dynamics
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.