Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification. We developed a new liquid chromatography coupled to tandem mass spectrometry method to quantify 8-OHdG and 8-isoprostane in EBC simultaneously. We applied this novel biomarker method in EBC obtained from 10 healthy subjects, 7 asthmatic subjects, and 9 subjects with chronic obstructive pulmonary disease. Both biomarkers were below the limit of detection (LOD) despite the good sensitivity of the chemical analytical method (LOD = 0.5 pg/mL for 8-OHdG; 1 pg/mL for 8-isoprostane). This lack of detection might result from factors affecting EBC collections. These findings are in line with methodological concerns already raised regarding the reliability of EBC collection for quantification of 8-OHdG and 8-isoprostane. Precaution is therefore needed when comparing literature results without considering methodological issues relative to EBC collection and analysis. Loss of analyte during EBC collection procedures still needs to be resolved before using these oxidative stress biomarkers in EBC.
Air pollution is recognized as one of the most serious public health issues worldwide and was declared to be a leading environmental cause of cancer deaths. At the same time, the cytokinesis-block micronucleus (CBMN) assay serves as a cancer predictive method that is extensively used in human biomonitoring for populations exposed to environmental contamination. The objective of this cross-sectional study is two-fold: to evaluate genomic instability in a sample (N = 130) of healthy, general population residents from Zagreb (Croatia), chronically exposed to different levels of air pollution, and to relate them to air pollution levels in the period from 2011 to 2015. Measured frequencies of CBMN assay parameters were in agreement with the baseline data for the general population of Croatia. Air pollution exposure was based on four factors obtained from a factor analysis of all exposure data obtained for the examined period. Based on the statistical results, we did not observe a significant positive association between any of the CBMN assay parameters tested and measured air pollution parameters for designated time windows, except for benzo(a)pyrene (B[a]P) that showed significant negative association. Our results show that measured air pollution parameters are largely below the regulatory limits, except for B[a]P, and as such, they do not affect CBMN assay parameters' frequency. Nevertheless, as air pollution is identified as a major health threat, it is necessary to conduct prospective studies investigating the effect of air pollution on genome integrity and human health.
Background: NanoEXPLORE is a project mandated and funded by the European Union. It aims to evaluate health
effects derived from exposure to engineered nanomaterials (ENMs) and to promote evidence-based EU policies
for ENMs safe use. As a preparatory step to the project, a survey was designed to identify the most commonly
used ENMs, exposure routes and release factors, and to evaluate the factors affecting participation of companies
and their workforce in research projects on ENMs safety.
Methods: A multidisciplinary team developed three standardized questionnaires for the survey. Each
questionnaire was designed to target a specific population of interest: senior managers, H&S managers, and
employees working in companies producing or using ENMs. The questionnaire directed at managers comprises
two parts: the first documents technical aspects of production and use, and characteristics informing possible
exposure scenarios; the second focuses on identifying factors that could affect companies' participation in
biological surveillance research. The questionnaire directed at workers aims at identifying factors and conditions
that could influence their participation in such research. The questionnaires are available in the project partners'
six languages (English, French, Italian, German, Spanish, and Greek). Invitation to participate to the survey was
sent in early April to 7,600 individual contacts identified by Yordas Group. As part of the management executives'
survey, respondents are asked to disseminate the workers' survey to their employees. The survey will be running
for approximately 4-5 weeks.
Results: Preliminary results are expected by the end of May; full results by end of July. Results will provide data
to inform the design of the longitudinal research protocol (biomonitoring of exposure and potential early effects
of ENMs on human health).
Short discussion/conclusions: To our knowledge, this survey is the first trying to document technical aspects as
well as companies and individuals' motivation to participate in biological surveillance programmes.
Biomonitoring has been widely used in assessing exposures in both occupational and public health complementing chemical risk assessments because it measures the concentrations of chemical substances in human body fluids (e.g., urine and blood). Biomonitoring considers all routes and sources of exposure. An occupational biomonitoring guidance document has been elaborated (OECD Occupational Biomonitoring Guidance) within the OECD framework and specifically, the Working Parties on Exposure and Hazard Assessment by scientific experts from 40 institutes and organizations representing 15 countries. The guidance provides practical information for assessing chemical exposures in occupational settings including the three common routes of exposure: inhalation, skin absorption and ingestion due to hand to mouth contact. The elaborated stepwise approach for conducting biomonitoring is tailored for occupational health professionals, scientists, risk assessors, and regulators. It includes methods for selecting appropriate biomarkers, devising sampling strategies, and assessing laboratories for validated analytical methods for the biomarker of interest, and ensuring timely feedback of results. Furthermore, it describes procedures for setting up efficient biomonitoring programs based on the Similar Exposure Group (SEG) approaches. Derived health-based human exposure biomarker assessment values called Occupational Biomonitoring Levels (OBLs) are proposed for use in occupational exposure and risk assessment. It also helps with the interpretation of biomonitoring results routinely collected and procedures for communicating biomonitoring results at individual, collective, and workplace levels. Ethical considerations associated with biomonitoring are also discussed. The ultimate goal of this biomonitoring approach is to promote harmonized application and interpretation of biomarkers as well as evidence-based occupational risk management measures.
Glycol ethers are organic solvents present in countless products for professional and domestic use. The main toxicological concerns are hematotoxicity, respiratory and reproductive toxicity. The general population can be exposed when using products containing one or several glycol ethers that evaporate or if sprayed, generate aerosols that can be inhaled. The rate at which glycol ethers enters blood following inhalation exposure are unknown in humans, and chemical risk assessors only rely on animal and in vitro toxicity studies. Propylene glycol monomethyl ether (PGME) and propylene glycol monobutyl ether (PGBE) are two examples of glycol ethers used worldwide. Our study aimed to provide human toxicokinetic data after inhalation exposure of low PGME and PGBE concentrations tested alone or in mixture. Healthy participants (n = 28) were exposed to 35 ppm (131 mg/m3) of PGME and 15 ppm (i.e., 83 mg/m3) of PGBE for 2 or 6 h. Blood was regularly collected during the exposure sessions. PGME and PGBE were immediately bioavailable in blood during exposure, and the mean absorption rates were up to 13 μg/L/min and 2.45 μg/L/min, respectively. Maximum mean blood concentration (Cmax) was 2.91 mg/L and 0.41 mg/L for PGME and PGBE. The cumulative internal doses over time (area under the curve, AUC) were 11 mg∗h/L and 1.81 mg∗h/L for PGME and PGBE. PGME and PGBE total blood uptake could possibly be higher in physically active individuals, such as workers. We recommend that glycol ethers present on the market undergo toxicological testing with the internal doses we found in our toxicokinetic study.
There are several methods for quantifying malondialdehyde (MDA), an oxidative stress biomarker, in exhaled breath condensate (EBC). However, due to the very diluted nature of this biological matrix, a high variability is observed at low concentrations. We aimed to optimize a 2,4-dinitrophenylhydrazine-based method using liquid chromatography coupled to tandem mass spectrometry and characterize the uncertainty associated with this method. We investigated the following parameters for the method validation: calibration linearity, limit of detection (LOD), precision, recovery, and matrix effect. The results were used to identify the main sources of uncertainty and calculating the combined uncertainty. The applicability of this method was evaluated in an ongoing epidemiological study by analyzing 164 EBC samples collected from different professional groups in subway environments. The optimized method was sensitive (LOD: 70 pg/mL), precise (inter-day variation < 19%) and accurate (recovery range: 92-106.5%). The calculated analytical uncertainty was the highest at the LOQ level and reached 23%. Although the analytical uncertainty was high at low MDA concentrations, it was significantly lower than that the observed inter-individual variability. Hence, this method performs sufficiently well and can be recommended for future use in epidemiological researches relying on between-subject differences.