Insulin-like growth factor 1 (IGF-1) induces skeletal muscle maturation and enlargement (hypertrophy). These responses require protein synthesis and myofibril formation (myofibrillogenesis). However, the signaling mechanisms of myofibrillogenesis remain obscure. We found that IGF-1-induced phosphatidylinositol 3-kinase-Akt signaling formed a complex of nebulin and N-WASP at the Z bands of myofibrils by interfering with glycogen synthase kinase-3β in mice. Although N-WASP is known to be an activator of the Arp2/3 complex to form branched actin filaments, the nebulin-N-WASP complex caused actin nucleation for unbranched actin filament formation from the Z bands without the Arp2/3 complex. Furthermore, N-WASP was required for IGF-1-induced muscle hypertrophy. These findings present the mechanisms of IGF-1-induced actin filament formation in myofibrillogenesis required for muscle maturation and hypertrophy and a mechanism of actin nucleation.
Osteocrin (OSTN), a bone-derived humoral factor, was reported to act on heart and bone by potentiating the natriuretic peptide (NP) system. Ostn gene polymorphisms have been associated with renal function decline, but its pathophysiological role in the kidney remains unclear.The role of endogenous OSTN was investigated using systemic Ostn-knockout (KO) mice. As a model for OSTN administration, liver-specific Ostn-overexpressing mice crossed with KO (KO-Tg) were generated. These mice were subjected to unilateral ischemia-reperfusion injury (IRI) and renal lesions after 21 days of insult were evaluated. A comprehensive analysis of the Wnt/β-catenin pathway was performed using a polymerase chain reaction (PCR) array. Reporter plasmid-transfected proximal tubular cells (NRK52E) were used to investigate the mechanism by which OSTN affects the pathway.After injury, KO mice showed marginal worsening of renal fibrosis compared with wild-type mice, with comparable renal atrophy. KO-Tg mice showed significantly ameliorated renal atrophy, fibrosis and tubular injury, together with reduced expressions of fibrosis- and inflammation-related genes. The PCR array showed that the activation of the Wnt/β-catenin pathway was attenuated in KO-Tg mice. The downstream targets Mmp7, Myc and Axin2 showed similar results. MMP7 and Wnt2 were induced in corticomedullary proximal tubules after injury, but not in KO-Tg. In NRK52E, OSTN significantly potentiated the inhibitory effects of NP on transforming growth factor β1-induced activation of the Wnt/β-catenin pathway, which was reproduced by a cyclic guanosine monophosphate analog.Ectopic Ostn overexpression ameliorated subsequent renal injury following ischemia-reperfusion. OSTN could represent possible renoprotection in acute to chronic kidney disease transition, thus serving as a potential therapeutic strategy.
CXCR4 expression is critical for localization of centroblasts in the dark zone of germinal centers (GCs), and centrocytes downregulate CXCR4 and thus leave the dark zone to reside in the light zone. However, mechanisms governing CXCR4 downregulation on centrocytes are not known. In this study, we show that the amount of intracellular CXCR4 in centroblasts was similar to that in centrocytes, suggesting differential control of CXCR4 protein expression in these GC B cells. Restimulation of activated B cells with IL-21, which is a major cytokine produced by T follicular helper cells, accelerated CXCR4 internalization by inducing endocytosis-related GRK6 expression. Although CXCR4 expression was downregulated on GC B cells by IL-21 stimulation, CXCR4(low) centrocytes developed in the spleens of IL-21R-deficient mice, suggesting other mechanisms for downregulation. The level of CD63 (which recruits CXCR4 to late endosome in CD4 T cells) in centrocytes was more than that in centroblasts and was strikingly elevated in activated Bcl6-deficient B cells. Bcl6, a transcriptional repressor, was detected on the chromatin of the CD63 gene in resting B cells, therefore CD63 is a molecular target of Bcl6. Downregulation of CD63 mRNA in activated Bcl6-deficient B cells by small interfering RNA upregulated CXCR4 expression on the B cells. Furthermore, addition of Bcl6 inhibitor to activated B cell cultures increased CD63 mRNA expression in (and downregulated CXCR4 expression on) those activated B cells. Thus, CXCR4 can be downregulated on activated B cells by IL-21-induced endocytosis and CD63-mediated endosomal recruitment, and these mechanisms may contribute to downregulation of CXCR4 on centrocytes.
Here we describe an optimized protocol for X-gal staining of tissue clearing embryo and adult mouse using CUBIC. The activity of LacZ knock-in reflecting endogenous expression of genes of interest in the whole body can be visualized by X-gal staining. This protocol is suitable for examining the developmental stage-specific expression of genes of interest spatially and temporally. For complete details on the use and execution of this protocol, please refer to Watanabe-Takano et al. (2021).
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Transcriptional repressor B-cell lymphoma 6 (Bcl6) appears to regulate TH2 immune responses in allergies, but its precise role is unclear. We previously reported that Bcl6 suppressed IL-4 production in naïve CD4+ T cell-derived memory TH2 cells. To investigate Bcl6 function in allergic responses in naturally occurring memory phenotype CD4+ T (MPT) cells and their derived TH2 (MPTH2) cells, Bcl6-manipulated mice, highly conserved intron enhancer (hcIE)-deficient mice, and reporter mice for conserved noncoding sequence 2 (CNS2) 3′ distal enhancer region were used to elucidate Bcl6 function in MPT cells. The molecular mechanisms of Bcl6-mediated TH2 cytokine gene regulation were elucidated using cellular and molecular approaches. Bcl6 function in MPT cells was determined using adoptive transfer to naïve mice, which were assessed for allergic airway inflammation. Bcl6 suppressed IL-4 production in MPT and MPTH2 cells by suppressing CNS2 enhancer activity. Bcl6 downregulated Il4 expression in MPTH2 cells, but not MPT cells, by suppressing hcIE activity. The inhibitory functions of Bcl6 in MPT and MPTH2 cells attenuated allergic responses. Bcl6 is a critical regulator of IL-4 production by MPT and MPTH2 cells in TH2 immune responses related to the pathogenesis of allergies.
The heart is an endocrine organ, as cardiomyocytes (CMs) secrete natriuretic peptide (NP) hormones. Since the discovery of NPs, no other peptide hormones that affect remote organs have been identified from the heart. We identified osteocrin (Ostn) as an osteogenesis/chondrogenesis regulatory hormone secreted from CMs in zebrafish. ostn mutant larvae exhibit impaired membranous and chondral bone formation. The impaired bones were recovered by CM-specific overexpression of OSTN. We analyzed the parasphenoid (ps) as a representative of membranous bones. In the shortened ps of ostn morphants, nuclear Yap1/Wwtr1-dependent transcription was increased, suggesting that Ostn might induce the nuclear export of Yap1/Wwtr1 in osteoblasts. Although OSTN is proposed to bind to NPR3 (clearance receptor for NPs) to enhance the binding of NPs to NPR1 or NPR2, OSTN enhanced C-type NP (CNP)-dependent nuclear export of YAP1/WWTR1 of cultured mouse osteoblasts stimulated with saturable CNP. OSTN might therefore activate unidentified receptors that augment protein kinase G signaling mediated by a CNP-NPR2 signaling axis. These data demonstrate that Ostn secreted from the heart contributes to bone formation as an endocrine hormone.
Abstract Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)‐cadherin‐mediated endothelial cell–cell junctions to maintain homeostasis. Thus, impairments of VE‐cadherin‐mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell‐specific Rap1a / Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D‐immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE‐cadherin‐mediated endothelial cell–cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE‐cadherin adhesions through inhibition of a Rho‐ROCK pathway‐induced activation of cytoplasmic nonmuscle myosin II (NM‐II). Simultaneously, Rap1 induces junctional NM‐II activation to create circumferential actin bundles, which anchor and stabilize VE‐cadherin at cell–cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)‐induced pulmonary vascular leakage than wild‐type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS‐induced increase in pulmonary endothelial permeability in wild‐type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation‐induced pulmonary vascular leakage.