The potential toxicity of Cr to plants poses a severe threat to human health. Biochar and Se can reduce the absorption of Cr and its phytotoxicity in plants, but the associated mechanisms at subcellular levels have not been addressed in depth. A study was designed to investigate the effects of biochar, foliar application of Se, and their combination on the physicochemical and biological properties of the soil, Cr availability, Cr absorption, and Cr subcellular distribution in each part of the plant, and biomass and quality of two water spinach (Ipomoea aquatica) genotypes. The results showed that biochar, Se, and their combination increased the organic matter content and available NPK nutrients in the soil and improved the urease, phosphatase, catalase, and sucrase activities in the soil. Furthermore, they also increased the number of bacteria, actinomycetes, and fungi in the soil, were conducive to dry matter accumulation in I. aquatica, and increased the contents of soluble sugar and soluble protein in its leaves. The Cr contents in the roots and shoots of I. aquatica under different treatments were reduced compared with those in the control group. The content of Cr(VI) in the root-soil of I. aquatica with low Cr accumulation and the contents of Cr in various parts of I. aquatica were lower than those in I. aquatica with high Cr accumulation, and the absorbed Cr was mainly accumulated in the roots. Cr was mainly distributed in the cell walls and soluble fractions of the roots, stems, and leaves of I. aquatica and was less distributed in the organelles. Biochar and Se helped to increase the proportion of Cr in the cell walls of the roots and soluble fractions of the leaves of I. aquatica. The effects of improving the soil properties, passivating and inhibiting Cr absorption by I. aquatica, and reducing the Cr proportion in the organelles of biochar were superior to those of Se application. The foliar application of Se and biochar had no synergistic effect on inhibiting Cr absorption by I. aquatica. Based on these findings, the application of biochar in Cr-contaminated soil or foliar application of Se with low Cr-accumulating plants may be effective means of reducing the Cr absorption by plants and its toxicity to ensure the safe production of agricultural products in Cr-contaminated regions.
Salinity, one of the catastrophic abiotic stresses that uces wheat production around the globe. Abscisic acid (ABA) is a stress phytohormone as a signaling molecule that led us to investigate its potential to improve morpho-physiological characteristics, antioxidant metabolism, and ion homeostasis in wheat (Triticum aestivum L.) seedlings grown under salinity stress (0, 50, and 100 mM NaCl). The findings suggested that salt-induced toxicity significantly (P < 0.05) damaged root morphological characteristics, plant growth, photosynthetic pigments, and water contents, while trigger the oxidative injury, Na+ ion accumulation and uptake in wheat leaf and root tissues with the increasing NaCl concentration in the nutrient media. However, root-zone supply of ABA (0, 5, and 10 μM) prominently alleviated salt induced phytotoxicity. The 10 μM concentration of ABA promoted shoot (81.7%) and root (102.1%) dry weight, root length (38.2%), Chl. a (65.3%), Chl. b (149.0%), carotenoids (95.7%) and membrane damage (36.7%) when NaCl was added at 100 mM, relative to the corresponding treatment without ABA. Moreover, ABA (10 μM) supply decreased Na+ ion uptake (root to leaf) due to reduced transpiration rate (81.1%), and thereby ameliorated oxidative injury by ucing leaf malondialdehyde (MDA) and H2O2 contents by 36.8% and 29.9%, respectively, at 100 mM NaCl stress, relative to the similar treatment without ABA. In addition, the activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were upregulated by 143.9%, 20.2%, and 19.5% in leaves and by 144.9%, 23.4% and 41.1% in roots respectively, with 10 μM ABA application under 100 mM salinity stress, compa to the 100 mM NaCl treatment without ABA. Conclusively, this study proposed that root-zone ABA application promoted salinity tolerance in wheat seedlings and could be a practical approach for wheat production in salt-affected regions to ensure food security.
The application of water-retention polymers with improved fertilizers is a better crop-growing technique, especially in soils where the water-retention capacity is low. In Pakistan, different types of fertilizers, such as urea, DAP, MOP or SOP, are used from sowing to harvesting of crops. The use of water-retention polymers in low water-retaining soils is very important to increase its retention time. The experiment was conducted on half an acre of land in FFC Research Center located in Dyyalgarh, Millat Rd., near Deputy Wala interchange M4, Faisalabad, Punjab, Pakistan. The seed variety used in this experiment is zincole and the seed rate is 50 kg/acre. This experiment contains four different treatments, and each treatment contains three replicates. In T1, no water-retention polymers were used, while T2 was treated with standard and neem-coated urea under no water-retention polymer application. While in T3 and T4 recommended doses of polymers were used with standard and neem-coated urea. Irrigation scheduling was determined using tensiometers.. The research is aimed to keep moisture available in the root zone for better growth. For proper moisture monitoring tensiometers were installed.
Jute (Corchorus capsularis) is a widely cultivated fibrous species with important physiological characteristics including biomass, a deep rooting system, and tolerance to metal stress. Furthermore, Corchorus species are indigenous leafy vegetables and show phytoremediation potential for different heavy metals. This species has been used for the phytoremediation of different toxic pollutants such as copper (Cu), cadmium (Cd), zinc (Zn), mercury (Hg) and lead (Pb). The current literature highlights the physiological and morphological characteristics of jute that are useful to achieve successful phytoremediation of different pollutants. The accumulation of these toxic heavy metals in agricultural regions initiates concerns regarding food safety and reductions in plant productivity and crop yield. We discuss some innovative approaches to increase jute phytoremediation using different chelating agents. There is a need to remediate soils contaminated with toxic substances, and phytoremediation is a cheap, effective, and in situ alternative, and jute can be used for this purpose.
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
The realization of 2D/2D Van der Waals (VDW) heterojunction is an advanced approach to obtain superior photocatalytic efficiency. However, electron transfer through Van der Waals heterojunction formed through ex-situ assembly...