We report on the accuracy, measured with three-dimensional (3D) computed tomography (CT) postoperatively, in positioning custom 3D printed titanium components in patients with large acetabular defects. Twenty patients (13 females and 7 males) received custom-made acetabular implants between 2016 and 2018; the mean age was 66 years (SD = 11.6) and their mean body mass index was 28 (SD = 6.1). The median time to follow up was 25.5 months, range: 12 to 40 months. We describe a comparison method that uses the 3D models of CT-generated preoperative plans and the postoperative CT scans to quantify the discrepancy between planned and achieved component positions. Our primary outcome measures were the 3D-CT-measured difference between planned and achieved a component position in six degrees of freedom: center of rotation (CoR), component rotation, inclination (INC), and version (VER) of the cup. Our secondary outcome measures were: Oxford hip score, walking status, and complication rate. All components (100%) were positioned within 10 mm of planned CoR (in the three planes). Eighteen (95%) components were not rotated by more than 10° compared to the plan. Eleven (58%) components were positioned within 5° of planned cup angle (INC and VER). To date one complication has occurred, a periprosthetic fracture. This is the largest study in which postoperative 3D-CT measurements and clinical outcomes of custom-made acetabular components have been assessed. Accurate pre-op planning and the adoption of custom 3D printed implants show promising results in complex hip revision surgery.
Metal artefact reduction (MAR) techniques aim at removing metal-induced noise from clinical images. In Computed Tomography (CT), supervised deep learning approaches have been shown effective but limited in generalisability, as they mostly rely on synthetic data. In Magnetic Resonance Imaging (MRI) instead, no method has yet been introduced to correct the susceptibility artefact, still present even in MAR-specific acquisitions. In this work, we hypothesise that a multimodal approach to MAR would improve both CT and MRI. Given their different artefact appearance, their complementary information can compensate for the corrupted signal in either modality. We thus propose an unsupervised deep learning method for multimodal MAR. We introduce the use of Locally Normalised Cross Correlation as a loss term to encourage the fusion of multimodal information. Experiments show that our approach favours a smoother correction in the CT, while promoting signal recovery in the MRI.
Objectives The Precice nail is the latest intramedullary lengthening nail with excellent early outcomes. Implant complications have led to modification of the nail design. The aim of this study was to perform a retrieval study of Precice nails following lower-limb lengthening and to assess macroscopical and microscopical changes to the implants and evaluate differences following design modification, with the aim of identifying potential surgical, implant, and patient risk factors. Methods A total of 15 nails were retrieved from 13 patients following lower-limb lengthening. Macroscopical and microscopical surface damage to the nails were identified. Further analysis included radiology and micro-CT prior to sectioning. The internal mechanism was then analyzed with scanning electron microscopy and energy dispersive x-ray spectroscopy to identify corrosion. Results Seven male and three female patients underwent 12 femoral lengthenings. Three female patients underwent tibial lengthening. All patients obtained the desired length with no implant failure. Surface degradation was noted on the telescopic part of every nail design, less on the latest implants. Microscopical analysis confirmed fretting and pitting corrosion. Following sectioning, black debris was noted in all implants. The early designs were found to have fractured actuator pins and the pin and bearings showed evidence of corrosive debris. The latest designs showed evidence of biological deposits suggestive of fluid ingress within the nail but no corrosion. Conclusion This study confirms less internal corrosion following modification, but evidence of titanium debris remains. We recommend no change to current clinical practice. However, potential reuse of the Precice nail, for secondary limb lengthening in the same patient, should be undertaken with caution. Cite this article: V. C. Panagiotopoulou, K. Davda, H. S. Hothi, J. Henckel, A. Cerquiglini, W. D. Goodier, J. Skinner, A. Hart, P. R. Calder. A retrieval analysis of the Precice intramedullary limb lengthening system. Bone Joint Res 2018;7:476–484. DOI: 10.1302/2046-3758.77.BJR-2017-0359.R1.
Implantation of the femoral component with suboptimal version is associated with instability of the reconstructed hip joint. High variability of Prosthetic Femoral Version (PFV) has been reported in primary Total Hip Arthroplasty (THA). Three-dimensional (3D) Patient-Specific Instrumentation (PSI) has been recently developed and may assist in delivering a PFV within the intended range. We performed a pilot study to better understand whether the intra-operative use of a novel PSI guide, designed to deliver a PFV of 20°, results in the target range of PFV in primary cemented THA.We analysed post-operative Computed-Tomography (CT) data of two groups of patients who underwent primary cemented THA through posterior approach; 1. A group of 11 patients (11 hips) for which the surgeon used an intra-operative 3D-printed stem positioning guide (experimental) 2. A group of 24 patients (25 hips) for which the surgeon did not use the guide (control). The surgeon aimed for a PFV of 20°, and therefore the guide was designed to indicate the angle at which the stem was positioned intra-operatively. PFV angles were measured using the post-operative 3D-CT models of the proximal femurs and prosthetic components in both groups. Our primary objective was to compare the PFV in both groups. Our secondary objective was to evaluate the clinical outcome.Mean (± SD) values for the PFV was 21.3° (± 4.6°) and 24.6° (± 8.2°) for the experimental and control groups respectively. In the control group, 20% of the patients reported a PFV outside the intended range of 10° to 30° anteversion. In the experimental group, this percentage dropped to 0%. Satisfactory clinical outcome was recorded in both groups.The intra-operative use of a PSI PFV guide helped the surgeon avoid suboptimal PFV in primary cemented THA. Further studies are needed to evaluate if the PSI guide directly contributes to a better clinical outcome.
The management of massive acetabular defects at the time of revision hip surgery is challenging. Severe pelvic bone loss and the heterogeneity and quality of the remaining bone stock can compromise the fixation and mechanical stability of the implant.
The assessment of three-dimensional bony defects is important to inform the surgical planning of hip reconstruction. Mirroring of the contralateral side has been previously used to measure the hip center of rotation (CoR). However, the contralateral side may not be useful when diseased or replaced. Statistical Shape Models (SSMs) can aid reconstruction of patient anatomy. Previous studies have been limited to computational models only or small patient cohorts. We used SSM as a tool to help derive landmarks that are often absent in hip joints of patients with large acetabular defects. Our aim was to compare the reconstructed pelvis with patients who have previously undergone hip revision. This retrospective cohort study involved 38 patients with Paprosky type IIIB defects. An SSM was built on 50 healthy pelvises and used to virtually reconstruct the native pelvic morphology for all cases. The outcome measures were the difference in CoR for (1) SSM versus diseased hip, (2) SSM versus plan, and (3) SSM versus contralateral healthy hip. The median differences in CoR were 31.17 mm (interquartile range [IQR]: 43.80-19.87 mm), 8.53 mm (IQR: 12.76-5.74 mm), and 7.84 mm (IQR: 10.13-5.13 mm), respectively. No statistical difference (p > 0.05) was found between the SSM versus plan and the SSM versus contralateral CoRs. Our findings show that the SSM model can be used to reconstruct the absent bony landmarks of patients with significant lysis regardless of the defect severity, hence aiding the surgical planning of hip reconstruction and implant design.
Aims The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. Methods We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method. Results The two groups were matched for patient sex, age (61 and 63 years), time to revision (30 and 41 months), implant size (54 mm and 52 mm), and porosity (72% and 60%) (p > 0.152). There was no difference in visual bony attachment (p = 0.209). Histological analysis showed greater bone ingrowth in 3D-printed implants (p < 0.001), with mean bone attachment of 63% (SD 28%) and 37% (SD 20%), respectively. This was observed for all the outcome measures. Conclusion This was the first study to investigate osseointegration in retrieved 3D-printed acetabular implants. Greater bone ingrowth was found in 3D-printed implants, suggesting that better osseointegration can be achieved. However, the influence of specific surgeon, implant, and patient factors needs to be considered. Cite this article: Bone Joint Res 2021;10(7):388–400.
Dual mobility (DM) cups are designed to improve stability, however have been associated with increased risk of impingement that can ultimately result in intraprosthetic dislocation. It is speculate...