Rhabdomyolysis is a syndrome caused by injury to skeletal muscle. There is limited data of rhabdomyolysis in the elderly. The objective of this study is to investigate demographic data, etiologies, laboratory values, prognostic factors, and mortality of rhabdomyolysis in the geriatric population. A 4-years retrospective chart review study was conducted. Our inclusion criteria were age above 65 years and creatinine kinase level excess five times of normal upper limit. Among 167 patients, 47.3% were male. The median age at diagnosis was 80.11 (66-101) years. The duration of follow up in the study ranged from 0 to 48 months. Fall (with or without immobilization) was the most frequent cause of rhabdomyolysis in 56.9%. The mean baseline glomerular filtration rate (GFR), GFR at diagnosis, and peak decline in GFR was 76.94, 48.96, and 54.41 cc/min respectively. The mean CK at diagnosis and peak CK was 5097.22 and 6320.07. There were 45 deaths (21%) over the span of 4 years. Multivariate analysis demonstrated that number of medications pre-admission (Meds No.), peak decline in GFR, and acute kidney injury (AKI) are independent predictors for overall survival for rhabdomyolysis in the elderly. To our knowledge, this is the first epidemiological study of rhabdomyolysis in the elderly. Falls (with and without immobilization) were the most common etiology. Meds No. (>8), peak decline in GFR (<30 cc/min), and evidence of AKI are associated with shorter overall survival and can serve as potential independent prognostic markers for rhabdomyolysis in elderly patients.
This research work examined how biodiesel produced from frying oils affects the physicochemical properties of its mixtures with conventional heating oil. Through the characterization of biodiesel blends and heating oil, the purpose is to produce an improved heating oil that will meet the specifications of the existing legislation for heating oil, while positively contributing to reducing the production of pollutants. The percentage of biodiesel added to a conventional diesel fuel contributes to the reduction of the pollutants produced during combustion. The examined biodiesel is considered the residual product, which was produced at a factory in Cyprus, and was deemed unsuitable for export, because it does not meet the legal requirements. Using specific volumes of these mixtures, twelve parameters were determined in order to investigate the effect of the mixtures: kinematic viscosity, sulfur content, micro carbon residue (MCR), distillation curves, density, cloud point (CP), fatty acid methyl esters (FAMEs) content, heat of combustion, iodine value (IV), cetane index (CI) after distillation, oxidation stability, and cold filter plugging point (CFPP). A number of fuel properties including the kinematic viscosity, MCR, distillation temperature—up to 80% distillate—and density showed an increase as the percentage of FAMEs raised from 2.5 to 50%, while others showed a mixed behavior (e.g., IV, CP, CI, CFPP), and the rest an inverse trend (e.g., sulfur content, heat of combustion and oxidation stability). An efficient potential utilization of a residual domestic product is proposed, while the pollutants that accumulate on the urban atmospheres during the winter months, due to increased heating needs of homes and other public or private buildings, will be significantly reduced.