Hypericum kouytchense Lévl is a semi-evergreen plant of the Hypericaceae family. Its roots and seeds have been used in a number of traditional remedies for antipyretic, detoxification, anti-inflammatory, antimicrobial and antiviral functions. However, to date, no bioactivity compounds have been characterized from the insect gall of H. kouytchens. In this study, we evaluated the antiviral activities of different extracts from the insect gall of H. kouytchen against cathepsin L, HIV-1 and renin proteases and identified the active ingredients using UPLC-HRMS. Four different polar extracts (HW, H30, H60 and H85) of the H. kouytchense insect gall exhibited antiviral activities with IC50 values of 10.0, 4.0, 3.2 and 17.0 µg/mL against HIV-1 protease; 210.0, 34.0, 24.0 and 30.0 µg/mL against cathepsin L protease; and 180.0, 65.0, 44.0 and 39.0 µg/mL against human renin, respectively. Ten compounds were identified and quantified in the H. kouytchense insect gall extracts. Epicatechin, eriodictyol and naringenin chalcone were major ingredients in the extracts with contents ranging from 3.9 to 479.2 µg/mg. For HIV-1 protease, seven compounds showed more than 65% inhibition at a concentration of 1000.0 µg/mL, especially for hypericin and naringenin chalcone with IC50 values of 1.8 and 33.0 µg/mL, respectively. However, only hypericin was active against cathepsin L protease with an IC50 value of 17100.0 µg/mL, and its contents were from 0.99 to 11.65 µg/mg. Furthermore, we attempted to pinpoint the interactions between the active compounds and the proteases using molecular docking analysis. Our current results imply that the extracts and active ingredients could be further formulated and/or developed for potential prevention and treatment of HIV or SARS-CoV-2 infections.
In this study, we isolated nine compounds from the acid hydrolysate of the flower buds of Lonicera fulvotomentosa Hsu et S. C. Cheng and characterized their chemical structures using 1H-NMR, 13C-NMR, and electron ionization mass spectroscopy (EI-MS). These compounds were identified as β-sitosterol (1), 5,5′-dibutoxy-2,2′-bifuran (2), nonacosane-10-ol (3), ethyl (3β)-3,23-dihydroxyolean-12-en-28-oate (4), oleanolic acid (5), ethyl caffeate (6), caffeic acid (7), isovanillin (8), and hederagenin (9), with 4 as a new triterpene compound. Inhibitory activity against human immunodeficiency virus (HIV) protease was also evaluated for the compounds, and only ethyl caffeate, caffeic acid, and isovanillin (6, 7, and 8) exhibited inhibitory effects, with IC50 values of 1.0 μM, 1.5 μM, and 3.5 μM, respectively. Molecular docking with energy minimization and subsequent molecular dynamic (MD) simulation showed that ethyl caffeate and caffeic acid bound to the active site of HIV protease, while isovanillin drifted out from the active site and dissociated into bulk water during MD simulations, and most of the binding residues of HIV protease have been previously identified for HIV protease inhibitors. These results suggest that caffeic acid derivatives may possess inhibitory activities towards HIV protease other than previously reported inhibitory activities against HIV integrase, and thus ethyl caffeate and caffeic acid could be used as lead compounds in developing potential HIV protease inhibitors, and possibly even dual-function inhibitors against HIV.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
This article explores the application of existing social media platforms for human–robot interaction. With the increasing popularity of social media platforms that connect humans, we propose to portray domestic robots as buddies on the contact list of family members and present a robot management system that employs complementary social media platforms for humans to interact with the vacuuming robot Roomba and a surveillance robot developed on top of iRobot Create. The social media platforms adopted include short message services (SMS), instant messenger (MSN), an online shared calendar (Google Calendar), and a social networking site (Facebook). Hence, we can provide a rich set of user-familiar, intuitive, and highly accessible interfaces, allowing users to flexibly choose their preferred tools in different situations. An in-lab experiment and a multiday field study are conducted to study the characteristics and strengths of each interface and to investigate users' perception to the robots and behaviors in choosing the interfaces.
Flavones benefit human health through their anti-inflammatory activity; however, their structure-activity relationship is unclear. Herein, we selected 15 flavones with the same backbone but different substituents and systematically assessed their anti-inflammatory activities in RAW 264.7 regarding cellular-Src kinase (c-Src) affinity, suppression of IκBα phosphorylation, inhibition of nitric oxide (NO) and inducible nitric oxidase (iNOS) production, and downregulation of genes of proinflammatory cytokines interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α). Overall, our results showed that the double bond between C2-C3 and C3'- and C4'-OH promoted anti-inflammatory activity, while C8- and C5'-OH and the methoxy group on C4' attenuated the overall anti-inflammatory and antioxidant activities. The hydroxyl groups at other positions exhibited more complicated functions. The two most effective flavones are 3',4'-dihydroxyflavone and luteolin with inhibitory concentration (IC50) values for inhibiting the LPS-induced nitric oxide level are 9.61 ± 1.36 and 16.90 ± 0.74 μM, respectively. Furthermore, they suppressed the production of iNOS by approximately 90% and inhibited IL-1β and IL-6 by more than 95%. Taken together, our results established a relationship between the flavone structure and anti-inflammatory activity in vitro.
In this work, we developed quantitative structure-activity relationships (QSAR) models for prediction of oxygen radical absorbance capacity (ORAC) of flavonoids. Both linear (partial least squares-PLS) and non-linear models (artificial neural networks-ANNs) were built using parameters of two well-established antioxidant activity mechanisms, namely, the hydrogen atom transfer (HAT) mechanism defined with the minimum bond dissociation enthalpy, and the sequential proton-loss electron transfer (SPLET) mechanism defined with proton affinity and electron transfer enthalpy. Due to pronounced solvent effects within the ORAC assay, the hydration energy was also considered. The four-parameter PLS-QSAR model yielded relatively high root mean square errors (RMSECV = 0.783, RMSEE = 0.668, RMSEP = 0.900). Conversely, the ANN-QSAR model yielded considerably lower errors (RMSEE = 0.180 ± 0.059, RMSEP1 = 0.164 ± 0.128, and RMSEP2 = 0.151 ± 0.114) due to the inherent non-linear relationships between molecular structures of flavonoids and ORAC values. Five-fold cross-validation was found to be unsuitable for the internal validation of the ANN-QSAR model with a high RMSECV of 0.999 ± 0.253; which is due to limited sample size where resampling with replacement is a considerably better alternative. Chemical domains of applicability were defined for both models confirming their reliability and robustness. Based on the PLS coefficients and partial derivatives, both models were interpreted in terms of the HAT and SPLET mechanisms. Theoretical computations based on density functional theory at ωb97XD/6-311++G(d,p) level of theory were also carried out to further shed light on the plausible mechanism of anti-peroxy radical activity. Calculated energetics for simplified models (genistein and quercetin) with peroxyl radical derived from 2,2'-azobis (2-amidino-propane) dihydrochloride suggested that both SPLET and single electron transfer followed by proton loss (SETPL) mechanisms are competitive and more favorable than HAT in aqueous medium. The finding is in good accord with the ANN-based QSAR modelling results. Finally, the strongly predictive ANN-QSAR model was used to predict antioxidant activities for a series of 115 flavonoids designed combinatorially with flavone as a template. Structural trends were analyzed, and general guidelines for synthesis of new flavonoid derivatives with potentially potent antioxidant activities were given.
Potentilla kleiniana Wight et Arn(PK, 'Wu Pi Feng' in Chinese) was recorded as Miao ethnic medicine for treatment of fever, cough, ulcer, and erysipelas for thousands years. This study aimed to evaluate the antiviral activity of four PK extracts and seven compounds by using HIV-1 protease (HIV-1 PR). In addition, Ultra-High Performance Liquid Chromatography and High Resolution Mass Spectrometry (UPLC-HRMS) was employed to identify the bioactive components. The toxicity assessment of the extracts was done before antiviral screening using a highly specific human aspartyl protease, renin protease by fluorimetric method. As a result, seven compounds and four extracts of PK inhibited HIV-1 PR with IC50 range from 0.009 to 0.36 mg/mL, and did not appreciably inhibit the general human protease renin. This study first demonstrated that four PK extracts, ellagic acid and ursolic acid potent inhibit HIV-1 protease, could be used as an efficacious drug candidate to treat SARS-CoV-2 infection.