Transgenic (Tg) mice containing bacterial artificial chromosome (BAC) DNA are widely used for gene expression analysis and gene therapy models because BAC transgenes provide gene expression at physiological levels with the same developmental timing as endogenous genes. To ensure correct interpretation of transgene functions, investigation of the genomic organisation and integration of the BAC transgene is required. Here, we describe a reliable method based on droplet digital PCR (ddPCR) and inverse PCR to estimate copy number, genomic organisation and insertion sites of BAC transgenes in the mouse genome. We generated BAC Tg mice containing fragments of BAC clone RP23-59P20. ddPCR and iPCR analysis showed that the transgene consisted of five fragments of the BAC clone containing the Mkrn3 gene region, and that the transgene was inserted into Bckdhb, homozygous deletion of which causes the maple syrup urine disease phenotype. The ddPCR method described here should prove useful for analysis of genomic organisation and integration of BAC transgenes.
Sotos syndrome (SoS) is an autosomal dominant overgrowth syndrome with characteristic craniofacial dysmorphic features and various degrees of mental retardation. We previously showed that haploinsufficiency of the NSD1 gene is the major cause of SoS, and submicroscopic deletions at 5q35, including NSD1, were found in about a half (20/42) of our patients examined. Since the first report, an additional 70 SoS cases consisting of 53 Japanese and 17 non-Japanese have been analyzed. We found 50 microdeletions (45%) and 16 point mutations (14%) among all the 112 cases. A large difference in the frequency of microdeletions between Japanese and non-Japanese patients was noted: 49 (52%) of the 95 Japanese patients and only one (6%) of the 17 non-Japanese had microdeletions. A sequence-based physical map was constructed to characterize the microdeletions. Most of the microdeletions were confirmed to be identical by FISH analysis. We identified highly homologous sequences, i.e., possible low copy repeats (LCRs), in regions flanking proximal and distal breakpoints of the common deletion, This suggests that LCRs may mediate the deletion. Such LCRs seem to be present in different populations. Thus the different frequency of microdeletions between Japanese and non-Japanese cases in our study may have been caused by patient-selection bias.