Non-synchronous excitation under low volume operation is a major risk to the mechanical integrity of last stage moving blades (LSMBs) in low-pressure (LP) steam turbines. These vibrations are often induced by a rotating aerodynamic instability similar to rotating stall in compressors. Currently extensive validation of new blade designs is required to clarify whether they are subjected to the risk of not admissible blade vibration. Such tests are usually performed at the end of a blade development project. If resonance occurs a costly redesign is required, which may also lead to a reduction of performance. It is therefore of great interest to be able to predict correctly the unsteady flow phenomena and their effects. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. 3D CFD has been applied to simulate the unsteady flow in the air model turbine. It has been shown that the simulation reproduces well the characteristics of the phenomena observed in the tests. This methodology has been transferred to more realistic steam turbine multi stage environment. The numerical results have been validated with measurement data from a multi stage model LP steam turbine operated with steam. Measurement and numerical simulation show agreement with respect to the global flow field, the number of stall cells and the intensity of the rotating excitation mechanism. Furthermore, the air model turbine and model steam turbine numerical and measurement results are compared. It is demonstrated that the air model turbine is a suitable vehicle to investigate the unsteady effects found in a steam turbine.
Nonsynchronous excitation under low volume operation is a major risk to the mechanical integrity of last stage moving blades (LSMBs) in low-pressure (LP) steam turbines. These vibrations are often induced by a rotating aerodynamic instability similar to rotating stall in compressors. Currently extensive validation of new blade designs is required to clarify whether they are subjected to the risk of not admissible blade vibration. Such tests are usually performed at the end of a blade development project. If resonance occurs a costly redesign is required, which may also lead to a reduction of performance. It is therefore of great interest to be able to predict correctly the unsteady flow phenomena and their effects. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. 3D computational fluid dynamics (CFD) has been applied to simulate the unsteady flow in the air model turbine. It has been shown that the simulation reproduces well the characteristics of the phenomena observed in the tests. This methodology has been transferred to more realistic steam turbine multistage environment. The numerical results have been validated with measurement data from a multistage model LP steam turbine operated with steam. Measurement and numerical simulation show agreement with respect to the global flow field, the number of stall cells and the intensity of the rotating excitation mechanism. Furthermore, the air model turbine and model steam turbine numerical and measurement results are compared. It is demonstrated that the air model turbine is a suitable vehicle to investigate the unsteady effects found in a steam turbine.
During extreme low volume flow conditions, the last stages of a low pressure steam turbine operate in ventilation conditions that can cause a significant temperature increase of critical regions of the last stage moving blade (LSB). Under some conditions, the blade temperature may rise above a safe operating temperature, requiring the machine to be shut down. Limiting the heating effect on the LSB increases the allowable operating range of the low pressure turbine. One common method is to spray water droplets into the low pressure exhaust. As the length of LSBs continues to increase, this method reaches its limit of practical operating effectiveness due to the amount of water required and its impact on the erosion of the LSB. An investigation into complimentary solutions to limit the temperature increase was conducted using CFD. An appropriate CFD setup was chosen from a sensitivity study on the effects from geometry, mesh density, turbulence model, and time dependency. The CFD results were verified against steam turbine data from a scaled test facility. The proposed solutions include low temperature steam extraction, targeted for critical regions of the moving blade. From the test turbine and CFD results, the drivers of the temperature increase during ventilation conditions are identified and described.
The diversification of power generation methods within existing power networks has increased the requirement for operational flexibility of plants employing steam turbines. This has led to the situation where steam turbines may operate at very low volume flow conditions for extended periods of time. Under operating conditions where the volume flow through the last stage moving blades (LSMBs) of a low-pressure (LP) steam turbine falls below a certain limit, energy is returned to the working fluid rather than being extracted. This so-called “ventilation” phenomenon produces nonsynchronous aerodynamic excitation, which has the potential to lead to high dynamic blade loading. The aerodynamic excitation is often the result of a rotating phenomenon, with similarities to a rotating stall, which is well known in compressors. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. The analysis revealed that the rotating excitation mechanism observed in operating steam turbines is reproduced in the model turbine. A 3D computational fluid dynamics (CFD) method has been applied to simulate the unsteady flow in the air model turbine. The numerical model consists of the single stage modeled as a full annulus, along with the axial-radial diffuser. An unsteady CFD analysis has been performed with sufficient rotor revolutions to obtain globally periodic flow. The simulation reproduces the main characteristics of the phenomenon observed in the tests. The detailed insight into the dynamic flow field reveals information on the nature of the excitation mechanism. The calculations further indicate that the LSMB tip clearance flow has little or no effect on the characteristics of the mechanism for the case studied.
The diversification of power generation methods within existing power networks has increased the requirement for operational flexibility of plants employing steam turbines. This has led to the situation where steam turbines may operate at very low volume flow conditions for extended periods of time. Under operating conditions where the volume flow through the last stage moving blades (LSMBs) of a low-pressure (LP) steam turbine falls below a certain limit, energy is returned to the working fluid rather than being extracted. This so-called “ventilation” phenomenon produces non-synchronous aerodynamic excitation, which has the potential to lead to high dynamic blade loading. The aerodynamic excitation is often the result of a rotating phenomenon, with similarities to rotating stall, which is well known in compressors. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. Detailed analysis revealed that the rotating excitation mechanism observed in operating steam turbines, is reproduced in the model turbine. 3D CFD has been applied to simulate the unsteady flow in the air model turbine. The numerical model consists of the single stage modelled as a full annulus, as well as the axial-radial diffuser. An unsteady CFD analysis has been performed for sufficient rotor revolutions such that the flow is globally periodic. It has been shown that the simulation reproduces well the characteristics of the phenomenon observed in the tests. The detailed insight into the flow field allows the drawing of conclusions as to the nature of the excitation mechanism. One result is that the LSMB tip clearance flow is found to have very little or no effect on the characteristics of mechanism for the case studied.
The diversification of power generation methods within existing power networks has increased the requirement for operational flexibility of plants employing steam turbines. This has led to the situation where steam turbines may operate at very low volume flow conditions for extended periods of time. Under operating conditions where the volume flow through the last stage moving blades (LSMBs) of a low-pressure (LP) steam turbine falls below a certain limit, energy is returned to the working fluid rather than being extracted. This so-called “ventilation” phenomenon produces non-synchronous aerodynamic excitation, which has the potential to lead to high dynamic blade loading. The aerodynamic excitation is often the result of a rotating phenomenon, with similarities to rotating stall, which is well known in compressors. Detailed unsteady pressure measurements have been performed in a single stage model steam turbine operated with air under ventilation conditions. Detailed analysis revealed that the rotating excitation mechanism observed in operating steam turbines, is reproduced in the model turbine. 3D CFD has been applied to simulate the unsteady flow in the air model turbine. The numerical model consists of the single stage modeled as a full annulus, as well as the axial-radial diffuser. An unsteady CFD analysis has been performed for sufficient rotor revolutions such that the flow is globally periodic. It has been shown that the simulation reproduces well the characteristics of the phenomenon observed in the tests. The detailed insight into the flow field allows the drawing of conclusions as to the nature of the excitation mechanism. One result is that the LSMB tip clearance flow is found to have very little or no effect on the characteristics of mechanism for the case studied.
During extreme low volume flow conditions, the last stages of a low pressure steam turbine operate in ventilation conditions that can cause a significant temperature increase of critical regions of the last stage moving blade. Under some conditions, the blade temperature may rise above a safe operating temperature, requiring the machine to be shut down. Limiting the heating effect on the last stage moving blade increases the allowable operating range of the low pressure turbine. One common method is to spray water droplets into the low pressure exhaust. As the length of last stage moving blades continues to increase, this method reaches its limit of practical operating effectiveness due to the amount of water required and its impact on the erosion of the LSB. An investigation into complimentary solutions to limit the temperature increase was conducted using CFD. An appropriate CFD setup was chosen from a sensitivity study on the effect of geometry, mesh density, turbulence model and time dependency. The CFD results were verified against steam turbine data from a test facility. The proposed complimentary solutions to limit the temperature increase include low temperature steam extraction, targeted for critical regions of the moving blade. From the test turbine and CFD results, the drivers of the temperature increase during ventilation conditions are identified and described.
Non-synchronous excitation under low volume operation is a major risk to the mechanical integrity of last stage moving blades (LSMBs) in low-pressure (LP) steam turbines. These vibrations are often induced by a rotating aerodynamic instability similar to rotating stall in compressors. Unsteady computational fluid dynamics (CFD) has been applied to simulate the rotating stall phenomenon in two model turbines. It is shown that the investigated flow field presents a challenge to conventional Reynolds-averaged Navier–Stokes equations simulations. The modelling has been enhanced by applying scale-resolving turbulence modelling, which can simulate large-scale turbulent fluctuations. With this type of simulation a qualitative and quantitative agreement between CFD and measurement for the unsteady and time averaged flow field has been achieved. The results of the numerical investigation allow for a detailed insight into the dynamic flow field and reveal information on the nature of the excitation mechanism. It is concluded that the CFD approach developed can be used to assess LSMB blade designs prior to model turbine tests to check whether they are subjected to vibration under LVF caused by rotating stall.
Keywords: low-pressure steam turbine ; low-volume flow ; blade excitation ; unsteady aerodynamics ; rotating stall ; unsteady CFD ; flow measurements ; numerical analyses These Ecole polytechnique federale de Lausanne EPFL, n° 6096 (2014)Programme doctoral EnergieFaculte des sciences et techniques de l'ingenieurLaboratoire de thermique appliquee et de turbomachinesJury: Dr M. Farhat (president) ; Dr P. Ott, Dr I.W. McBean (directeurs) ; Prof. D. Favrat, Prof. T. Fransson, Prof. F. Truckenmuller (rapporteurs) Public defense: 2014-5-16 Reference doi:10.5075/epfl-thesis-6096Print copy in library catalog Record created on 2014-05-06, modified on 2017-05-10