Pestalotioid fungi commonly occur as pathogens, endophytes or saprobes. In this study, pestalotioid fungi associated with leaf spots and fruit rots were isolated from Alpinia malaccensis, A. galangal, Annona squamosa, Artocarpus heterophyllus, Citrus sp., Garcinia mangostana, Litsea petiolata, a pteridophyte, and Vitis vinifera in Chiang Rai, Thailand. Based on single- and multi-locus phylogenies using internal transcribed spacer, β-tubulin and partial translation elongation factor 1-α gene regions, along with morphological features, the isolates were identified as two new species, Neopestalotiopsis hydeana and Pestalotiopsis hydei. This is the first time a Pestalotiopsis sp. was reported associated with Litsea petiolata and a Neopestalotiopsis sp. recorded from Alpinia, Annona, Artocarpus, Garcinia and a pteridophyte in the world. This fungal group can be considered as an emerging pathogenic group on different hosts in different climatic conditions.
Abstract The field of mycology has grown from an underappreciated subset of botany, to a valuable, modern scientific discipline. As this field of study has grown, there have been significant contributions to science, technology, and industry, highlighting the value of fungi in the modern era. This paper looks at the current research, along with the existing limitations, and suggests future areas where scientists can focus their efforts, in the field mycology. We show how fungi have become important emerging diseases in medical mycology. We discuss current trends and the potential of fungi in drug and novel compound discovery. We explore the current trends in phylogenomics, its potential, and outcomes and address the question of how phylogenomics can be applied in fungal ecology. In addition, the trends in functional genomics studies of fungi are discussed with their importance in unravelling the intricate mechanisms underlying fungal behaviour, interactions, and adaptations, paving the way for a comprehensive understanding of fungal biology. We look at the current research in building materials, how they can be used as carbon sinks, and how fungi can be used in biocircular economies. The numbers of fungi have always been of great interest and have often been written about and estimates have varied greatly. Thus, we discuss current trends and future research needs in order to obtain more reliable estimates. We address the aspects of machine learning (AI) and how it can be used in mycological research. Plant pathogens are affecting food production systems on a global scale, and as such, we look at the current trends and future research needed in this area, particularly in disease detection. We look at the latest data from High Throughput Sequencing studies and question if we are still gaining new knowledge at the same rate as before. A review of current trends in nanotechnology is provided and its future potential is addressed. The importance of Arbuscular Mycorrhizal Fungi is addressed and future trends are acknowledged. Fungal databases are becoming more and more important, and we therefore provide a review of the current major databases. Edible and medicinal fungi have a huge potential as food and medicines, especially in Asia and their prospects are discussed. Lifestyle changes in fungi (e.g., from endophytes, to pathogens, and/or saprobes) are also extremely important and a current research trend and are therefore addressed in this special issue of Fungal Diversity.
This study was conducted to investigate the antagonistic activity of endophytic and rhizosphere fungi isolated from a medicinal plant, Sesuvium portulacastrum, against Pythium aphanidermatum, the cause of damping off of cucumber. A total of 40 endophytic and 19 rhizosphere fungi were isolated from S. portulacastrum. Three endophytic isolates and two rhizosphere isolates gave >50% suppression of P. aphanidermatum in the in vitro dual-culture tests. Scanning electron microscopic studies at the inhibition zone showed hyphae wall damage and abnormal mycelial growth of the genus Pythium. Molecular analysis identified the antagonistic endophytes as Aspergillus insulicola (isolate A435), A. insulicola (A419), and Aspergillus melleus (A412) and the rhizosphere antagonists as Aspergillus terreus (A213) and Aspergillus luchuensis (A116). Except for A116, the culture filtrates of the other antagonists significantly increased the electrolyte leakage from Pythium mycelia, whereas ethyl acetate extracts of A435, A412, and A213 showed significant growth suppression. All five antagonists were able to produce varying amounts of cellulase and β-glucanase enzymes. However, A435, A412, and A213 showed significantly higher cellulase activity, whereas A435 and A116 showed the highest β-glucanase activity. Controlled glasshouse growth experiments showed that isolates A435 and A116 resulted in up to 70% control of damping off, whereas isolates A412 and A213 showed 30 to 40% damping-off control. The antagonists A435, A116, and A213 also contributed to increased cucumber shoot length as well as shoot and root dry mass. The synergetic effects of metabolites and hydrolytic enzymes could be the reason for the variation between isolates in the antagonistic activity and cucumber growth promotion. This study reports for the first time A. insulicola, A. melleus, and A. luchuensis as potential biocontrol agents against P. aphanidermatum-induced damping off of cucumber.
Abstract Background Date palm (( Phoenix doctylifera L.) suffers from several fungal diseases. The endophytic microorganisms present in higher plants generally offer protection to their host plants against invading phytopathogenic fungi and bacteria. In the present study, endophytic bacteria associated with date palm leaves were isolated and their in vitro antagonistic potential against fungal pathogens causing leaf spots in date palm was demonstrated. Results Endophytic bacteria were isolated from date palm leaves of 3 different cultivars viz., Nighal, Khalas and Khinaizi and evaluated for their inhibitory activity against leaf spot pathogens of date palm viz., Fusarium solani , Alternaria sp., Nigrospora sp., Thieloviopsis sp., Curvularia subpapendrofii and Tilletiopsis minor using an in vitro dual culture assay. Of the 24 endophytic bacterial strains tested, the endophytes designated B1, B7, B8 and B9 obtained from cv. Nighal showed inhibitory activities (more than 55% mycelial growth inhibition) against F. solani and Alternaria sp. None of the bacterial endophytes inhibited the growth of other fungal pathogens tested. These antagonistic bacterial strains were identified as Pantoea septica on the basis of 16S rRNA gene sequence analysis. The hyphae of F. solani and Alternaria sp. exhibited morphological abnormalities such as shrinkage and disintegration when grown in the presence of antagonistic bacterial endophytes. The cell-free culture filtrates of the bacterial endophytes caused inhibition of mycelial growth and induced leakage of electrolytes from the mycelia of F. solani and Alternaria sp. This is the first study that describes inhibition of the date palm pathogens F. solani and Alternaria sp. by P. septica . Conclusion Endophytic Pantoea septica strains isolated from date palm leaves inhibited the mycelial growth of F. solani and Alternaria sp. and induced morphological changes in their mycelia. The culture filtrates of these bacterial strains also inhibited the mycelial growth and caused leakage of electrolytes from the mycelia of F. solani and Alternaria sp. These promising bacterial strains can be exploited as biocontrol agents to control F. solani and Alternaria sp.-induced leaf spot diseases of date palm.
This study led to the discovery of three entomopathogenic fungi associated with Kuwanaspis howardi, a scale insect on Phyllostachys heteroclada (fishscale bamboo) and Pleioblastus amarus (bitter bamboo) in China. Two of these species belong to Podonectria: P. kuwanaspidis X.L. Xu & C.L. Yang sp. nov. and P. novae-zelandiae Dingley. The new species P. kuwanaspidis has wider and thicker setae, longer and wider asci, longer ascospores, and more septa as compared with similar Podonectria species. The morphs of extant species P. novae-zelandiae is confirmed based on sexual and asexual morphologies. Maximum likelihood and Bayesian inference analyses of ITS, LSU, SSU, tef1-α, and rpb2 sequence data provide further evidence for the validity of the two species and their placement in Podonectriaceae (Pleosporales). The second new species, Microcera kuwanaspidis X.L. Xu & C.L. Yang sp. nov., is established based on DNA sequence data from ITS, LSU, SSU, tef1-α, rpb1, rpb2, acl1, act, cmdA, and his3 gene regions, and it is characterized by morphological differences in septum numbers and single conidial mass.
Pleosporales is a highly diverse (and the largest) order in Dothideomycetes, and it is widespread in decaying plants in various environments around the world. During a survey of fungal diversity in Sichuan Province, China, specimens of hyphomycetous and Thyridaria-like fungi were collected from dead branches of pine trees and cherry trees. These taxa were initially identified as members of Massarinaceae and Thyridariaceae through morphological examination. Phylogenetic analyses of the Thyridariaceae, combining ITS, SSU, LSU, RPB2, and TEF1 sequence data, indicated a distinct clade sister to Pseudothyridariella and Thyridariella, distinct from any genus in the family. Thus, a new genus, Vaginospora, is proposed to accommodate the type species Vaginospora sichuanensis, which is characterized by semi-immersed globose to oblong ascomata with an ostiolar neck, cylindrical to clavate asci with an ocular chamber, and hyaline to dark brown, fusiform, 3–5-transversely septate ascospores with an inconspicuous mucilaginous sheath. Based on the morphological comparisons and multi-locus phylogenetic analyses (ITS, SSU, LSU, RPB2, and TEF1) of the Massarinaceae, we have identified three collections belonging to the genus Helminthosporium, leading us to propose H. filamentosa sp. nov., H. pini sp. nov., and H. velutinum as a new host record. According to Phylogenetic analysis, H. pini formed an independent clade sister to H. austriacum and H. yunnanense, and H. filamentosa represents the closest sister clade to H. quercinum. Helminthosporium pini is distinct from H. austriacum by the shorter conidiophores and H. yunnanense by the longer and wider conidia. The H. filamentosa differs from H. quercinum in having longer conidiophores and smaller conidia. This study extends our understanding of diversity within Thyridariaceae and Helminthosporium. Our findings underscore the rich biodiversity and potential for discovering novel fungal taxa within these groups.