Effect of Sludge Residence Time on Phosphorus Removal Activities and Populations in Enhanced Biological Phosphorus Removal (EBPR) SystemsThis study performed a comprehensive and integrated evaluation of the influences of system solid residence time (SRT) on polyphosphate accumulating organisms (PAOs) and Glycogen Accumulating Organisms (GAOs) dynamics and on P removal performance at a full-scale EBPR system. Five parallel treatment trains were operated with five different SRTs (6, 7, 10, 20 and 40 days) for over 2 months at the...Author(s)Annalisa Onnis-HaydenNehreen MajedDouglas DruryLeAnna RissoKatherine McMahonApril Z. GuSourceProceedings of the Water Environment FederationDocument typeConference PaperPublisherWater Environment FederationPrint publication date Oct, 2013ISSN1938-6478DOI10.2175/193864713813667610Volume / Issue2013 / 19Content sourceWEFTECCopyright2013Word count176
The addition of external carbon sources for denitrification becomes necessary for wastewater treatment plants to meet more and more stringent effluent nitrogen limits. The concerns regarding the safety issues and cost of methanol motivated the use of MicroC™ as a nonflammable alternative carbon-source for biological denitrification. The denitrification rates and kinetics obtained by using MicroC™ were determined with both laboratory-acclimated biomass in SBRs system as well as with sludge from full-scale plants. Both low F/M ratio and high F/M ratio tests were performed in this study for comparison. The COD equivalent of MicroC™, the rates and kinetics were used as inputs into the BIOWIN model to simulate and compare the N removal performance with the addition of different external carbons in both pre-denitrification system (MLE) and MLE plus post denitrification system. The temperature effect on performances and the removal of nitrogen was also examined. The ability of a specific carbonacclimated denitrifying population to instantly utilize other carbon source was also investigated.
Advanced nutrient removal processes, while improving the water quality of the receiving water body, can also produce indirect environmental and health impacts associated with increases in usage of energy, chemicals, and other material resources. The present study evaluated three levels of treatment for nutrient removal (N and P) using 27 representative treatment process configurations. Impacts were assessed across multiple environmental and health impacts using life-cycle assessment (LCA) following the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) impact-assessment method. Results show that advanced technologies that achieve high-level nutrient removal significantly decreased local eutrophication potential, while chemicals and electricity use for these advanced treatments, particularly multistage enhanced tertiary processes and reverse osmosis, simultaneously increased eutrophication indirectly and contributed to other potential environmental and health impacts including human and ecotoxicity, global warming potential, ozone depletion, and acidification. Average eutrophication potential can be reduced by about 70% when Level 2 (TN = 3 mg/L; TP = 0.1 mg/L) treatments are employed instead of Level 1 (TN = 8 mg/L; TP = 1 mg/L), but the implementation of more advanced tertiary processes for Level 3 (TN = 1 mg/L; TP = 0.01 mg/L) treatment may only lead to an additional 15% net reduction in life-cycle eutrophication potential.
Sidestream EBPR (S2EBPR) is an emerging alternative process to address common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. A systematic evaluation and comparison of the process performance and microbial community structure was conducted between conventional and S2EBPR facilities in North America. The statistical analysis suggested higher performance stability in S2EBPR than conventional EBPR, although possible bias associated with other plant-specific factors might have affected the comparison. Variations in stoichiometric values related to EBPR activity and discrepancies between the observed values and current model predictions suggested a varying degree of metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. Microbial community analysis using various techniques suggested comparable known candidate PAO relative abundances in S2EBPR and conventional EBPR systems, whereas the relative abundance of known candidate GAOs seemed to be consistently lower in S2EBPR facilities than conventional EBPR facilities. 16S rRNA gene sequencing analysis revealed differences in the community phylogenetic fingerprints between S2EBPR and conventional facilities and indicated statistically higher microbial diversity index values in S2EBPR facilities than those in conventional EBPRs. PRACTITIONER POINTS: Sidestream EBPR (S2EBPR) can be implemented with varying and flexible configurations, and they offer advantages over conventional configurations for addressing the common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. Survey of S2EBPR plants in North America suggested statistically more stable phosphorus removal performance in S2EBPR plants than conventional EBPRs, although possible bias might affect the comparison due to other plant-specific factors. The EBPR kinetics and stoichiometry of the S2EBPR facilities seemed to vary and are associated with metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. The abundance of known candidate PAOs in S2EBPR plants was similar to those in conventional EBPRs, and the abundance of known candidate GAOs was generally lower in S2EBPR than conventional EBPR facilities. Further finer-resolution analysis of PAOs and GAOs, as well as identification of other unknown PAOs and GAOs, is needed. Microbial diversity is higher in S2EBPR facilities compared with conventional ones, implying that S2EBPR microbial communities could show better resilience to perturbations due to potential functional redundancy.
In this study, a full-scale pilot testing was performed with side-by-side operation of a conventional enhanced biological phosphorus removal (EBPR) process and a side-stream EBPR (S2EBPR) process. A comparison of the performance, activities and population dynamics of key functionally relevant populations between the two configurations were carried out. The results demonstrated that, with the same influent wastewater characteristics, S2EBPR configuration showed more effective and stable orthophosphate (PO4-P) removal performance (up to 94% with average effluent concentration down to 0.1 mg P/L) than conventional EBPR, especially when the mixers in side-stream reactor were operated intermittently. Mass balance analysis illustrated that both denitrification and EBPR performance have been enhanced in S2EBPR configuration through diverting primary effluent to anoxic zone and producing additional carbon (~40%) via fermentation in side-stream reactor. Microbial characterization showed that there was no significant difference in the relative abundances of Ca. Accumulibacter (~5.9%) and Tetrasphaera (~16%) putative polyphosphate-accumulating organisms (PAOs) between the two configurations. However, lower relative abundance of known GAOs was observed in S2EBPR configuration (1.1%) than the conventional one (2.7%). A relatively higher PAO activity and increased degree of dependence on glycolysis pathway than TCA cycle was observed in S2EBPR configuration using P release and uptake batch test. Adequate anaerobic solid retention time (SRT) and conditions that generate continuous and slow feeding/production of volatile fatty acid (VFA) with higher composition percentage of propionate in the side-stream reactor of S2EBPR process likely provide a competitive advantage for PAOs over GAOs.
The potential health effects associated with contaminants of emerging concern (CECs) have motivated regulatory initiatives and deployment of energy- and chemical-intensive advanced treatment processes for their removal. This study evaluates life cycle environmental and health impacts associated with advanced CEC removal processes, encompassing both the benefits of improved effluent quality as well as emissions from upstream activities. A total of 64 treatment configurations were designed and modeled for treating typical U.S. medium-strength wastewater, covering three policy-relevant representative levels of carbon and nutrient removal, with and without additional tertiary CEC removal. The USEtox model was used to calculate characterization factors of several CECs with missing values. Stochastic uncertainty analysis considered variability in influent water quality and uncertainty in CEC toxicity and associated characterization factors. Results show that advanced tertiary treatment can simultaneously reduce nutrients and CECs in effluents to specified limits, but these direct water quality benefits were outweighed by even greater increases in indirect impacts for the toxicity-related metrics, even when considering order-of-magnitude uncertainties for CEC characterization factors. Future work should consider water quality aspects not currently captured in life cycle impact assessment, such as endocrine disruption, in order to evaluate the full policy implications of the CEC removal.