Oil-contaminated wastewater threatens our environment and health, especially that stabilized by surfactants. Conventional separation protocols become invalid for those surfactant-stabilized nanoemulsions due to their nanometer-sized droplets and extremely high stability. In this paper, photothermal-responsive ultrathin Au nanorods/poly(N-isopropylacrylamide-co-acrylamide) cohybrid single-walled carbon nanotube (SWCNT) nanoporous membranes are constructed. Such membranes are capable of separating oil-in-water nanoemulsions with a maximum flux up to 35 890 m2·h–1·bar–1 because they feature hydrophilicity, underwater oleophobicity, and nanometer pore sizes. It is remarkable that the permeation flux can be simply modulated by light illumination during the process of separation, due to the incorporation of thermal-responsive copolymers and Au nanorods. Meanwhile, it shows ultrahigh separation efficiency (>99.99%) and desired antifouling and recyclability properties. We anticipate that our ultrathin photothermal-responsive SWCNT-based membranes provide potential for the generation of point-of-use water treatment devices.
We present a new method to synthesize hydrogel particles by exploiting the interface formed between two immiscible liquids. Spherical monomer droplets, of varying diameters, could be suspended at the planar interface formed between two immiscible liquids. While suspended, polymerization could proceed, after which the hydrogel particles that were formed could be collected. Using this approach, we were able to synthesize particles containing various monomers/co-monomers including: N-isopropylacrylamide, 2-hydroxyethyl methacrylate, and N-(3-aminopropyl)methacrylamide hydrochloride. The approach also allowed for the facile encapsulation of various inorganic nanoparticles and small molecules, including: Au nanoparticles, Ag nanoparticles, magnetic cobalt (Co) nanoparticles, tris(4-(dimethylamino)phenyl)methylium chloride (crystal violet) and fluorescein isothiocyanate isomer I (FITC). The benefit of this approach is the ability to load polymer particles with a wide variety of moieties without the need to optimize any reaction conditions. So long as the species to be encapsulated in the particle are soluble in water, and minimally soluble in the solvents used to form the interface, they will be incorporated in the polymerized particle.
Abstract To simply and multitudinously synthesize hollow microspheres in a pure system is important for relevant research and application. Here, a simple and novel one-pot synthetic strategy to prepare polystyrene (PS) hollow microspheres via irradiation-assisted free-radical polymerizing and self-assembly (IFPS) approach under γ -ray irradiation with no additives introduced into the system is presented. And PS/2,5-Diphenyloxazole (PPO) fluorescent microspheres have been prepared successfully by IFPS reaction, which can be used as scintillators for the detection of ionizing radiation. A linear relationship between emitted luminescence and dose-activity in water is obtained, which suggests that composite microspheres could be used as liquid scintillation in specific environment.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract Fluorescent poly( N ‐isopropylacrylamide‐ co ‐Nile blue) (pNIPAm‐ co ‐NB) microgels were synthesized that exhibited fluorescence intensity changes in a water temperature‐dependent fashion. NB is well known to exhibit fluorescence intensity that depends on the hydrophobicity of the environment, while pNIPAm‐based microgels are well known to transition from swollen (hydrophilic) to collapsed (relatively hydrophobic) at temperatures greater than 32 °C; hence, we attribute the above behavior to the hydrophobicity changes of the microgels with increasing temperature. This phenomenon is ultimately due to NB dimers (relatively quenched fluorescence) being broken in the hydrophobic environment of the microgels leading to relatively enhanced fluorescence. We went on to show that the introduction of cucurbit[7]uril (CB[7]) into the pNIPAm‐ co ‐NB microgels enhanced their fluorescence allowing them to be used for polyamine (e.g., spermine [SPM]) detection. Specifically, CB[7] forms a host–guest interaction with NB in the microgels, which prevents NB dimerization and enhances their fluorescence. When SPM is present, it forms a host–guest complex that is favored over the CB[7]‐NB host–guest interaction, which frees the NB for dimerization and leads to fluorescence quenching. As a result, we could generate an SPM sensor capable of SPM detection down to ~0.5 µmol/L in complicated matrixes such as serum and urine.