Routine clinical implementation of human gene therapy awaits safe and efficient gene delivery methods. Polymeric vectors hold promise due to the availability of diverse chemistries, potentially providing targeting, low immunogenicity, nontoxicity, and robustness, but lack sufficient gene delivery efficiency. We have synthesized a versatile group of degradable polycations, through addition of 800-Da polyethylenimine (PEI) to small diacrylate cross-linkers. The degradable polymers reported here are similar in structure, size (14−30 kDa), and DNA-binding properties to commercially available 25-kDa PEI, but mediate gene expression two- to 16-fold more efficiently and are essentially nontoxic. These easily synthesized polymers are some of the most efficient polymeric vectors reported to date and provide a versatile platform for investigation of the effects of polymer structure and degradation rate on gene delivery efficiency.
Poly (ethylene oxide) (PEO)-poly(ester) copolymers are biocompatible, biodegradable diblock polymers that spontaneously form core-shell nanoparticles in water. The hydrophobic polyester core of these micelles can solubilize small, hydrophobic drug molecules that have shown promise in the treatment of cancer and infectious diseases. In the context of micelle-based drug delivery, encapsulation efficiency and release are irrevocably related to the equilibrium between unimers and micelles in aqueous solution. Another common characterization is the critical-micelle concentrations, or the lowest concentration of copolymer required to form a micelle, which indirectly describes the equilibrium and stability. As micelles form, pyrene preferentially localizes in the core of the micelles, and the ratio increases in this less polar environment. The hydrophobic model drugs discussed until now utilized dialysis to remove free drug. Paclitaxel is a lipophilic small-molecule drug highly successful in the treatment of breast, ovarian, and lung cancers.
Next-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor. One such immunostimulant is granulocyte macrophage-colony-stimulating factor (GMCSF) that functions by recruiting and activating antigen-presenting cells (dendritic cells) in the tumor, thereby initiating anti-tumor immune responses. However, key problems with GMCSF are lack of efficacy and the risk of systemic toxicity caused by the leakage of GMCSF from the tumor tissue. We have designed tumor-retentive versions of GMCSF that are safe yet potent immunostimulants for the local treatment of solid tumors. The engineered GMCSFs (eGMCSF) were synthesized by recombinantly fusing tumor-ECM (extracellular matrix) binding peptides to GMCSF. The eGMCSFs exhibited enhanced tumor binding and potent immunological activity in vitro and in vivo. Upon IT administration, the tumor-retentive eGMCSFs persisted in the tumor, thereby alleviating systemic toxicity, and elicited localized immune activation to effectively turn an unresponsive immunologically "cold" tumor "hot".
Abstract Background Atherosclerosis is a condition in which an adhesive substance called plaque accumulates over time inside the arteries. Plaque buildup results in the constriction of arteries, causing a shortage of blood supply to tissues and organs. Removing atherosclerotic plaques controls the development of acute ischemic stroke and heart diseases. It remains imperative for positive patient outcomes. Purpose This study sought to develop a minimally invasive technique for removing arterial plaques by applying focused ultrasound (FUS) energy on the metal surface of a nitinol catheter wire to induce inertial cavitation. The induced cavitation can deplete plaque mechanically inside the arteries, leading towards improved recanalization of blood vessels. Methods The enhanced cavitation effect induced by combining FUS with a metal catheter was first verified by exposing agar phantom gels with or without a 0.9‐mm diameter nitinol wire to an acoustic field produced by a 0.5‐MHz FUS transducer. The phenomenon was further confirmed in pork belly fat samples with or without a 3‐mm diameter nitinol catheter wire. Cavitation was monitored by detecting the peaks of emitted ultrasound signals from the samples using a passive cavitation detector (PCD). Cavitation threshold values were determined by observing the jump in the peak amplitude of signals received by the PCD when the applied FUS peak negative pressure (PNP) increased. To simulate arterial plaque removal, FUS with or without a catheter was used to remove tissues from pork belly fat samples and the lipid cores of human atherosclerotic plaque samples using 2500‐cycle FUS bursts at 10% duty cycle and a burst repetition rate of 20 Hz. Treatment outcomes were quantified by subtracting the weight of samples before treatment from the weight of samples after treatment. All measurements were repeated 5 times ( n = 5) unless otherwise indicated, and paired t ‐tests were used to compare the means of two groups. A p ‐value of <0.05 will be considered significant. Results Our results showed that with a nitinol wire, the cavitation threshold in agar phantoms was reduced to 2.6 MPa from 4.3 MPa PNP when there was no nitinol wire in the focal region of FUS. For pork belly fat samples, cavitation threshold values were 1.0 and 2.0 MPa PNP, with and without a catheter wire, respectively. Pork belly fat tissues and lipid cores of atherosclerotic plaques were depleted at the interface between a catheter and the samples at 2 and 4 MPa FUS PNP, respectively. The results showed that with a catheter wire in the focal region of a 3‐min FUS treatment session, 24.7 and 25.6 mg of lipid tissues were removed from pork belly fat and human atherosclerotic samples, respectively. In contrast, the FUS‐only group showed no reduction in sample weight. The differences between FUS‐only and FUS‐plus‐catheter groups were statistically significant ( p < 0.001 for the treatment on pork belly samples, and p < 0.01 for the treatment on human atherosclerotic samples). Conclusion This study demonstrated the feasibility of catheter‐assisted FUS therapy for removing atherosclerotic plaques.