SUMMARY Arm swing during human gait has been shown to reduce both angular momentum about the vertical and energy expenditure, and has been hypothesized to enhance gait stability. To examine this hypothesis, we studied the effect of arm swing on the local and global stability of steady-state gait, as well as the ability to perform adequate recovery actions following a perturbation. Trunk kinematics of 11 male subjects was measured in treadmill walking with normal and with restricted arm swing. In half of the trials, gait was perturbed by a position-controlled forward pull to the trunk. We constructed state spaces using data recorded from the unperturbed steady-state walking trials, and quantified local gait stability by calculating maximum Lyapunov exponents. In addition, we analyzed perturbation forces, the distance from the unperturbed gait pattern, and the return toward the normal gait pattern following an external perturbation. Walking without arm swing led to a non-significantly lower Lyapunov exponent (P=0.06), significantly higher perturbation forces (P<0.05), and significantly slower movements away from the attractor (P<0.01). These results suggest that gait without arm swing is characterized by similar local stability to gait with arm swing and a higher perturbation resistance. However, return towards the normal gait pattern was significantly slower (P<0.05) when walking with restricted arms, suggesting that the arms play an important role in the recovery from a perturbation. Collectively, the results suggest that arm swing as such does not enhance gait stability, but rather that recovery movements of the arms contribute to the overall stability of human gait.
In human walking, power for propulsion is generated primarily via ankle and hip muscles. The addition of a 'passive' hip spring to simple bipedal models appears more efficient than using only push-off impulse, at least, when hip spring associated energetic costs are not considered. Hip flexion and retraction torques, however, are not 'free', as they are produced by muscles demanding metabolic energy. Studies evaluating the inclusion of hip actuation costs, especially during the swing phase, and the hip actuation's energetic benefits are few and far between. It is also unknown whether these possible benefits/effects may depend on speed. We simulated a planar flat-feet model walking stably over a range of speeds. We asked whether the addition of independent hip flexion and retraction remains energetically beneficial when considering work-based metabolic cost of transport (MCOT) with different efficiencies of doing positive and negative work. We found asymmetric hip actuation can reduce the estimated MCOT relative to ankle actuation by up to 6%, but only at medium speeds. The corresponding optimal strategy is zero hip flexion and some hip retraction actuation. The reason for this reduced MCOT is that the decrease in collision loss is larger than the associated increase in hip negative work. This leads to a reduction in total positive mechanical work, which results in an overall lower MCOT. Our study shows how ankle actuation, hip flexion, and retraction actuation can be coordinated to reduce MCOT.
Selecting motor strategies in daily life tasks requires a perception of the task requirements as well as of one's own physical abilities. Age-related cognitive and physical changes may affect these perceptions. This might entail that some older adults select inappropriate movement strategies when confronted with daily-life motor tasks, which could lead to balance loss or falls. We investigated whether older adults select motor strategies in accordance with their actual physical ability. Twenty-one older adults were subjected to a stepping down paradigm, in which full-body kinematics of selected and reactive behaviour were recorded. Stepping down from a kerb can be done with either (1) a relatively low effort but more balance threatening heel landing, or (2) a more controlled but more demanding toe landing. The probability of selecting a toe landing grows with an increase in kerb height. We determined the kerb height at which participants switched from heel to toe landing during expected stepping down over different heights as an indicator of their perceived ability. During an unexpected step down trial, participants encountered a step down of 0.1 meter earlier than expected, because part of the walkway was removed and covered by a black cloth. We evaluated participants' actual physical ability from the reactive behaviour, with performance defined as the reduction in kinetic energy between the peak value after landing and the onset of the next step. To unravel whether the selected motor strategies corresponded with actual physical ability, the ability to recover from the unexpected step down was correlated to the height at which the participants switched movement strategy. The switching height was not correlated to the ability to recover from an unexpected step down (rho= 0.034, p= 0.877). This finding suggests that older adults do not select their movement strategy in stepping down based on their actual abilities, or have an imprecise perception of their actual abilities. Future research should evaluate whether inappropriate motor strategy selection in a stepping down paradigm can explain accidental falls in older adults.
BackgroundBoth the Short Physical Performance Battery (SPPB) and daily life gait quality and quantity values obtained from wearable sensors are used to measure functional status. It is generally assumed that they are interrelated and exchangeable, but this has not yet been established. Interchangeability of these measures would pave the way for remote monitoring of functional status.Research questionAre the SPPB score and daily life gait quality and quantity values correlated in community-dwelling older adults? MethodsThe SPPB and gait quality and quantity data of 229 community-dwelling adults of 65 years or older were collected. The SPPB is a combined score of the Three Stage Balance test, Four Meter Walk test, and Five Times Sit to Stand test and ranges from 0 to 12. Participants wore a tri-axial inertial sensor for one week to assess gait quality (e.g. gait stability and smoothness) and quantity (e.g. number of strides). Correlation coefficients between SPPB scores and gait quality and quantity values were assessed using Spearman’s correlation.ResultsThe median age of the study population was 76.2 years (IQR 72.6-81.0), and 76% were women (n=175). The median SPPB score was 10 (IQR 8-11). Spearman's correlation coefficients between the SPPB and gait quality and quantity values were all below 0.3.SignificanceA possible explanation for the observed weak correlations is that the SPPB reflects the maximal capacity, while the gait quality and quantity values reflect the submaximal performance in daily life. The SPPB and gait quality and quantity values seem distinct constructs with complementary value, rather than being interchangeable. A more comprehensive understanding of functional status might be achieved by combining the SPPB assessment of standardized activities with the evaluation of inertial sensor measurements obtained during daily life activities.
Patients with chronic low back pain (CLBP) often demonstrate altered timing of thorax rotations in the transverse plane during gait. Increased axial trunk stiffness has been claimed to cause this movement pattern.The objective of this study was to assess whether axial trunk stiffness is increased in gait in CLBP patients.15 CLBP patients and 15 healthy controls walked on a treadmill that imposed rotational perturbations in the transverse plane. The effect of these perturbations on transverse pelvis, thorax and trunk (thorax relative to pelvis) rotations was evaluated in terms of residual rotations, i.e., the deviation of these movements from the unperturbed patterns. In view of the heterogeneity of the CLBP group, we additionally performed a subgroup comparison between seven patients and seven controls with maximal between-group contrast for timing of thorax rotations.Rotations of the walking surface had a clear effect on transverse pelvis, thorax and trunk rotations in all groups. No significant between-group differences on residual transverse pelvis, thorax and trunk rotations were observed.Axial trunk stiffness in gait does not appear to be increased in CLBP. Altered timing of thorax rotations in CLBP does not seem to be a result of increased axial trunk stiffness.
For this dataset kinematics, ground reaction forces and electromyography data were collected during human treadmill walking. Participants walked on the treadmill at normal and slow walking speed, across different conditions. Apart from unconstrained steady-state walking, these conditions included imposed foot placement and ankle moment constraints. In our analysis we focused on the coupling between CoM kinematic state and foot placement, as well as correlations with muscle activity, reflecting active foot placement control. The results have been presented and discussed in the paper entitled: Active foot placement control ensures stable gait: Effect of constraints on foot placement and ankle moments. Guidelines on how to use this code can be found in the word file "Documentation", which can be found in the zipped folder.
There is growing evidence that human locomotion is controlled by flexibly combining a set of basic muscle activity patterns. To explore how these patterns are modified to cope with environmental constraints, 10 healthy young adults 1st walked on a split-belt treadmill at symmetric speeds of 4 and 6 km/h for 2 min. An asymmetric condition was then performed for 10 min in which treadmill speeds for the dominant (fast) and nondominant (slow) sides were 6 and 4 km/h, respectively. This was immediately followed by a symmetric speed condition of 4 km/h for 5 min. Gait kinematics and ground reaction forces were recorded. Electromyography (EMG) was collected from 12 lower limb muscles on each side of the body. Nonnegative matrix factorization was applied to the EMG signals bilaterally and unilaterally to obtain basic activation patterns. A cross-correlation analysis was then used to quantify temporal changes in the activation patterns. During the early (1st 10 strides) and late (final 10 strides) phases of the asymmetric condition, the patterns related to ankle plantar flexor (push-off) of the fast limb and quadriceps muscle (contralateral heel contact) of the slow limb occurred earlier in the gait cycle compared with the symmetric conditions. Moreover, a bilateral temporal alignment of basic patterns between limbs was still maintained in the split-belt condition since a similar shift was observed in the unilateral patterns. The results suggest that the temporal structure of these locomotor patterns is shaped by sensory feedback and that the patterns are bilaterally linked.