An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An anti-fouling MFC–MBR coupled system was developed to mitigate membrane fouling through electrostatic repulsion and the in situ self-sustainable heterogeneous electro-Fenton process.
Using the crystal structure prediction method based on particle swarm optimization algorithm, three phases (Pnnm, C2/m and Pm-3m) for InS are predicted. The new phase Pm-3m of InS under high pressure is firstly reported in the work. The structural features and electronic structure under high pressure of InS are fully investigated. We predicted the stable ground-state structure of InS was the Pnnm phase and phase transformation of InS from Pnnm phase to Pm-3m phase is firstly found at the pressure of about 29.5 GPa. According to the calculated enthalpies of InS with four structures in the pressure range from 20 GPa to 45 GPa, we find the C2/m phase is a metastable phase. The calculated band gap value of about 2.08 eV for InS with Pnnm structure at 0 GPa agrees well with the experimental value. Moreover, the electronic structure suggests that the C2/m and Pm-3m phase are metallic phases.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Gas drainage materials are one critical aspect of preventing coal mine gas explosions. Here, a novel dual-liquid gas sealing material was developed to improve gas extraction. The mechanical properties and hydration mechanism of the proposed material were determined. The novel dual-liquid gas sealing material’s performance was verified experimentally and with field testing, with practical application explored in the YunGaiShan 2 coal mine. The results showed that the main factor responsible for gas drainage leakage was the poor sealing effect of the sealing materials on the cracks around the borehole. The novel dual-liquid gas sealing material reduced damage to the rock surrounding the borehole and significantly improved the gas drainage performance. The initial and final setting times of the novel dual-liquid material were shown to be controllable, and the slurry exhibited good fluidity, with a 28-day uniaxial compressive strength of 11.06 MPa. The analysis of the microscopic hydration mechanism showed that the production of ettringite (AFt) in the dual-liquid material increased significantly, forming a denser network interlace that functioned as a network skeleton, improving the compressive strength of the material and achieving the characteristics of plastic deformation. Field-based analysis was performed to verify the practical applicability of the proposed material, showing that the gas drainage concentration increased by 200.5% compared to the original sealing material. Moreover, the average gas drainage negative pressure increased from 7.8 kPa (using the conventional sealing technique) to 16.6 kPa using the proposed material. Overall, the proposed materials are suitable for sealing materials for effective gas drainage performance and can help control gas disasters.