Fueled by the widespread use of the internet, more and more ordinary people have now become merchandise sellers who sell their own possessions, such as antique collections and limited souvenirs, to buyers who are interested in such goods via online auctions. This study examines the decision making related to the bidding strategies used in online auctions by both sellers and buyers. When selling goods for which there is a limited supply, sellers consider whether to sell the single homogenous items in multiple, simultaneous auctions or all the items in a single auction. Moreover, when selling heterogeneous but associated goods, sellers may decide to bundle the items for sale or not with an aim of increasing the potential buyers’ willingness to make a purchase. We investigate the effects that various factors related to the bidding strategies used in online auctions, such as the base price and duration of the auction determined by the seller and the bidding price decided by the buyer, have on the seller’s profit, and the utilities of both parties are considered to derive the equilibrium solutions. This study contributes to the literature by proposing an online auction framework that focuses more on individual sellers selling a limited quantity of items with an aim to establish a favorable online auction for both sellers and buyers and earn more profits for sellers. The results show that the base prices and direct purchase prices should be unestablished to achieve the most attractive characteristics of online auctions, which would encourage more buyers to freely place bids. As a result, the bidding items would have more chances to be eventually obtained by the buyer who places the highest bid, which, thus, maximizes the seller’s profit.
Elm (Ulmus) has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137-145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA-, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT) were shared among all five species. The intron of ycf1 was the longest (5,675bp) while that of trnF-AAA was the smallest (53bp). All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be confirmed with a further analysis of their nuclear genomes. This study is the first report on Ulmus chloroplast genomes, which has significance for understanding photosynthesis, evolution, and chloroplast transgenic engineering.
Malate dehydrogenase (MDH) is widely distributed in plants and animals, and plays an important role in many metabolic processes. However, there have been few studies on MDH genes in poplar. In this study, 16 MDH gene sequences were identified from the Populus trichocarpa genome and renamed according to their chromosomal locations. Based on phylogenetic analysis, the PtMDH genes were divided into five groups, and genes that grouped together all shared the same subcellular location and had similar sequence lengths, gene structures, and conserved motifs. Two pairs of tandem duplication events and three segmental duplication events involving five genes were identified from the 15 PtMDH genes located on the chromosomes. Each pair of genes had a Ka/Ks ratios <1, indicating that the MDH gene family of P. trichocarpa was purified during evolution. Based on the transcriptome data of P. trichocarpa under salt stress and qRT-PCR verification, the expression patterns of PtMDH genes under salt stress were analyzed. The results showed that most of the genes were upregulated under salt stress, indicating that they play a role in the response of poplar to salt stress. The PtmMDH1 gene can be used as an important salt-tolerant candidate gene for further investigations of molecular mechanisms. This study lays the foundation for functional analysis of MDH genes and genetic improvement in poplar.
A plasmid and two isocaudamer systems, namely, NotI/Bsp120I and SpeI/XbaI/NheI, were used to construct a new type of multi-gene plant transformation vector system. This system included a transformation vector containing the restriction enzyme cutting sites Bsp120I and XbaI as well as a cloning vector containing the restriction enzyme cutting sites NotI, Bsp120I, SpeI, and NheI. The open reading frame of the new target genes was connected to the transformation vector. The original restriction enzyme cutting site disappeared after connecting to the isocaudamer. The plant transformation vector p096871, which contained Bacillus thuringiensis (Bt) genes Cry1Ac and Cry3A as well as p09X6, which contained mtlD, strD, betA, nhaA, and ostAB, were constructed using this vector system. Resistant plants were obtained after tobacco was transformed by two vectors via the Agrobacterium-mediated method. Detection by PCR revealed that all exogenous genes were inserted into the genome of tobacco. Real-time fluorescence quantification PCR, reverse transcription PCR, and ELISA detections were performed on five transgenic lines transformed by two Bt genes. Cry1Ac and Cry3A were inserted into the genome with a single copy to transcribe and express Bt toxins. The proposed vector system reduced the number of operational procedures and minimized the difficulty of the experiment.
Walnut (Juglans regia L.) is an important woody oilseed tree species due to its commercial value. However, the regulation mechanism of walnut oil accumulation is still poorly understood, which restricted the breeding and genetic improvement of high-quality oil-bearing walnuts. In order to explore the metabolic mechanism that regulates the synthesis of walnut oil, we used transcriptome sequencing technology and metabolome technology to comprehensively analyze the key genes and metabolites involved in oil synthesis of the walnut embryo at 60, 90, and 120 days after pollination (DAP). The results showed that the oil and protein contents increased gradually during fruit development, comprising 69.61% and 18.32% of the fruit, respectively, during ripening. Conversely, the contents of soluble sugar and starch decreased gradually during fruit development, comprising 2.14% and 0.84%, respectively, during ripening. Transcriptome sequencing generated 40,631 unigenes across 9 cDNA libraries. We identified 51 and 25 candidate unigenes related to the biosynthesis of fatty acid and the biosynthesis of triacylglycerol (TAG), respectively. The expression levels of the genes encoding Acetyl-CoA carboxylase (ACCase), long-chain acyl-CoA synthetases (LACS), 3-oxoacyl-ACP synthase II (KASII), and glycerol-3-phosphate acyl transfer (GPAT) were upregulated at 60 DAP relative to the levels at 90 and 120 DAP, while the stearoyl-ACP-desaturase (SAD) and fatty acid desaturase 2 (FAD2) genes were highly abundantly expressed during all walnut developmental periods. We found that ABSCISIC ACID INSENSEITIVE3 (ABI3), WRINKLEDl (WRI1), LEAFY COTYLEDON1 (LEC1), and FUSCA3 (FUS3) may be key transcription factors involved in lipid synthesis. Additionally, the metabolomics analysis detected 706 metabolites derived from 18 samples, among which, 4 are implicated in the TAG synthesis, 2 in the glycolysis pathway, and 5 in the tricarboxylic acid cycle (TCA cycle) pathway. The combined analysis of the related genes and metabolites in TAG synthesis showed that phospholipid:diacylglycerol acyltransferase (PDAT) genes were highly abundantly expressed across walnut fruit developmental periods, and their downstream metabolite TAG gradually accumulated with the progression of fruit development. The FAD2 gene showed consistently higher expression during fruit development, and its downstream metabolites 18:2-PC and 18:3-PC gradually accumulated. The ACCase, LACS, SAD, FAD2, and PDAT genes may be crucial genes required for walnut oil synthesis. Our data will enrich public databases and provide new insights into functional genes related to lipid metabolism in walnut.
Low temperature is among the most restrictive factors to limit the yield and distribution of pear. Pyrus hopeiensis is a valuable wild resource. PCA showed that P. hopeiensis had strong cold resistance. In this study, the mRNA and metabolome sequencing of P. hopeiensis flower organs exposed to different low temperatures were performed to identify changes of genes and metabolites in response to low-temperature stress. A total of 4 851 differentially expressed genes (DEGs) were identified. Trend analysis showed that these DEGs were significantly enriched in profiles 19, 18, 7, 14, 1, 4 and 11. And the KEGG enrichment analysis showed that the DEGs in profile 18 were significantly enriched in flavone and flavonol biosynthesis. Besides, the expressed trends as well as GO and KEGG functional enrichment analyses of DEGs under cold and freezing stress showed significantly difference. Analyses of flavonoid-related pathways indicated that flavonoid structural genes had undergone significant changes. Correlation analysis showed that bHLH and MYB TFs may affect flavonoid biosynthesis by regulating structural gene expression. And PhMYB308 and PhMYB330 were likely candidate repressors of flavonoid biosynthesis by binding to a specific site in bHLH proteins. In total, 92 differentially accumulated metabolites (DAMs) were identified in P. hopeiensis flowers including 12 flavonoids. WGCNA results showed that coral1, pink and brown4 modules were closely associated with flavonoids and 11 MYBs and 15 bHLHs among the three modules may activate or inhibit the expression of 23 structural genes of flavonoid biosynthesis. Taken together, the results of this study provided a theoretical basis for further exploration of the molecular mechanisms of flavonoid biosynthesis and cold resistance of P. hopeiensis flower organs and our findings laid a foundation for further molecular breeding in cold-resistant pear varieties.
Using floral organs of five pear cultivars as materials, this study determined and compared physiological indices such as relative conductivity, superoxide dismutase (SOD), and malondialdehyde (MDA) of each cultivar’s floral organs under different low-temperature stress treatments, and evaluated the cold resistance of the five pear cultivars. Transcriptome sequencing analysis was performed on the floral organs of a new early-ripening pear cultivar called “Jinguang”, and 259 differentially expressed genes (DEGs) were identified, which were mainly enriched in pathways related to circadian rhythm and flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) showed that specific gene modules were significantly associated with MDA and soluble protein. Key enzymes such as NPC1(non-specific PLC, NPC), transcription factor MYB102, BBX19, and LHY (Late elongated hypocotyl) genes were located at the core of the constructed network, and may have important potential roles under low-temperature stress.