Polyploidy has contributed to the evolution of eukaryotes, particularly flowering plants. The genomic consequences of polyploidy have been extensively studied, but the mechanisms for chromosome stability and diploidization in polyploids remain largely unknown. By using new cytogenetic tools to identify all of the homoeologous chromosomes, we conducted a cytological investigation of 50 resynthesized Brassica napus allopolyploids across generations S 0:1 to S 5:6 and in the S 10:11 generation. Changes in copy number of individual chromosomes were detected in the S 0:1 generation and increased in subsequent generations, despite the fact that the mean chromosome number among lines was approximately 38. The chromosome complement of individual plants (segregants) ranged from 36 to 42, with a bias toward the accumulation of extra chromosomes. Karyotype analysis of the S 10:11 generation detected aneuploidy and inter- and intragenomic rearrangements, chromosome breakage and fusion, rDNA changes, and loss of repeat sequences. Chromosome sets with extensive homoeology showed the greatest instability. Dosage balance requirements maintained chromosome numbers at or near the tetraploid level, and the loss and gain of chromosomes frequently involved homoeologous chromosome replacement and compensation. These data indicate that early generations of resynthesized B. napus involved aneuploidy and gross chromosomal rearrangements, and that dosage balance mechanisms enforced chromosome number stability. Seed yield and pollen viability were inversely correlated with increasing aneuploidy, and the greatest fertility was observed in two lines that were additive for parental chromosomes. These data on resynthesized B. napus and the correlation of fertility with additive karyotypes cast light on the origins and establishment of natural B. napus .
This chapter contains sections titled: Chromosome components: centromeres, telomeres, and origins of replication Telomere truncation of plant chromosomes Meiotic behavior and transmission of small engineered chromosomes in plants Modifi cation of engineered plant chromosomes Potential utility of engineered plant chromosomes Engineered plant chromosomes and ecological concerns of genetically modifi ed plants References
Background Studies in resynthesized Brassica napus allopolyploids indicate that homoeologous chromosome exchanges in advanced generations (S5∶6) alter gene expression through the loss and doubling of homoeologous genes within the rearrangements. Rearrangements may also indirectly affect global gene expression if homoeologous copies of gene regulators within rearrangements have differential affects on the transcription of genes in networks. Methodology/Principal Findings We utilized Arabidopsis 70mer oligonucleotide microarrays for exploring gene expression in three resynthesized B. napus lineages at the S0∶1 and S5∶6 generations as well as their diploid progenitors B. rapa and B. oleracea. Differential gene expression between the progenitors and additive (midparent) expression in the allopolyploids were tested. The S5∶6 lines differed in the number of genetic rearrangements, allowing us to test if the number of genes displaying nonadditive expression was related to the number of rearrangements. Estimates using per-gene and common variance ANOVA models indicated that 6–15% of 26,107 genes were differentially expressed between the progenitors. Individual allopolyploids showed nonadditive expression for 1.6–32% of all genes. Less than 0.3% of genes displayed nonadditive expression in all S0∶1 lines and 0.1–0.2% were nonadditive among all S5∶6 lines. Differentially expressed genes in the polyploids were over-represented by genes differential between the progenitors. The total number of differentially expressed genes was correlated with the number of genetic changes in S5∶6 lines under the common variance model; however, there was no relationship using a per-gene variance model, and many genes showed nonadditive expression in S0∶1 lines. Conclusions/Significance Few genes reproducibly demonstrated nonadditive expression among lineages, suggesting few changes resulted from a general response to polyploidization. Furthermore, our microarray analysis did not provide strong evidence that homoeologous rearrangements were a determinant of genome-wide nonadditive gene expression. In light of the inherent limitations of the Arabidopsis microarray to measure gene expression in polyploid Brassicas, further studies are warranted.
Engineered minichromosomes provide the ability to target transgenes to a defined insertion position for predictable expression on an independent chromosome. This technology promises to provide a means to add many genes to a synthetic chromosome in sequential manner. An additional advantage is that the multiple transgenes will not be inserted into the normal chromosomes and thus will not exhibit linkage drag when converging the transgenes to different germplasm nor will they be mutagenic. Telomere truncation coupled with the introduction of site-specific recombination cassettes has proven to be an easy method to produce minichromosomes. Telomere truncation results from the transformation of plasmids carrying a block of telomere repeats at one end. Minichromosomes consisting of little more than a centromere have been produced for B chromosomes of maize. Such small chromosomes have been studied for their meiotic behavior, which differs from normal sized chromosomes in that homologue pairing is rare or nonexistent and sister chromatid cohesion fails at meiosis I. Potential modifications of the minichromosomes that can address these issues are discussed. Minichromosomes can be recovered from transformed plants that are polyploid or that carry an additional chromosome as the preferred target for truncation. Site-specific recombination has been demonstrated to operate on these terminally located sites. By introducing normal B chromosomes into lines with engineered mini-B chromosomes, the latter can be increased in copy number, which provides the potential to augment the expression of the introduced genes. Because the vast majority of plant species have the same telomere sequence, the truncating transgenes should be effective in most plants to generate engineered minichromosomes. Such chromosomes establish the means to add or subtract multiple transgenes, multigene complexes, or whole biochemical pathways to plants to change their properties for agronomic applications or to use plants as factories for the production of foreign proteins or metabolites.
Many previous studies have provided evidence for genome changes in polyploids, but there are little data on the overall population dynamics of genome change and whether it causes phenotypic variability. We analyzed genetic, epigenetic, gene expression, and phenotypic changes in approximately 50 resynthesized Brassica napus lines independently derived by hybridizing double haploids of Brassica oleracea and Brassica rapa. A previous analysis of the first generation (S0) found that genetic changes were rare, and cytosine methylation changes were frequent. Our analysis of a later generation found that most S0 methylation changes remained fixed in their S5 progeny, although there were some reversions and new methylation changes. Genetic changes were much more frequent in the S5 generation, occurring in every line with lines normally distributed for number of changes. Genetic changes were detected on 36 of the 38 chromosomes of the S5 allopolyploids and were not random across the genome. DNA fragment losses within lines often occurred at linked marker loci, and most fragment losses co-occurred with intensification of signal from homoeologous markers, indicating that the changes were due to homoeologous nonreciprocal transpositions (HNRTs). HNRTs between chromosomes A1 and C1 initiated in early generations, occurred in successive generations, and segregated, consistent with a recombination mechanism. HNRTs and deletions were correlated with qualitative changes in the expression of specific homoeologous genes and anonymous cDNA amplified fragment length polymorphisms and with phenotypic variation among S5 polyploids. Our data indicate that exchanges among homoeologous chromosomes are a major mechanism creating novel allele combinations and phenotypic variation in newly formed B. napus polyploids.
Novel disease resistance gene paralogues are generated by targeted chromosome cleavage of tandem duplicated NBS-LRR gene complexes and subsequent DNA repair in soybean. This study demonstrates accelerated diversification of innate immunity of plants using CRISPR. Nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) gene families are key components of effector-triggered immunity. They are often arranged in tandem duplicated arrays in the genome, a configuration that is conducive to recombinations that will lead to new, chimeric genes. These rearrangements have been recognized as major sources of novel disease resistance phenotypes. Targeted chromosome cleavage by CRISPR/Cas9 can conceivably induce rearrangements and thus emergence of new resistance gene paralogues. Two NBS-LRR families of soy have been selected to demonstrate this concept: a four-copy family in the Rpp1 region (Rpp1L) and a large, complex locus, Rps1 with 22 copies. Copy-number variations suggesting large-scale, CRISPR/Cas9-mediated chromosome rearrangements in the Rpp1L and Rps1 complexes were detected in up to 58.8% of progenies of primary transformants using droplet-digital PCR. Sequencing confirmed development of novel, chimeric paralogs with intact open reading frames. These novel paralogs may confer new disease resistance specificities. This method to diversify innate immunity of plants by genome editing is readily applicable to other disease resistance genes or other repetitive loci.