The electric and optical impulse response of two types of high-speed OLED (HSOLED) driven by ultrashort electrical pulses is investigated. The two HSOLED were designed and manufactured to be characterized in the presence of electrical pulses ranging from 10 to 100 ns in duration and a repetition rate of 10 Hz. The impact of the OLED geometry and the fabrication process on the time response is investigated. This is the first time that an optimized HSOLED exhibits an electrical time response as low as 2.1±0.6 ns and also shorter than the device optical decay time (9.8± 0.2 ns). Moreover, the HSOLED measured current density reaches 3.0 kA/cm 2 , the highest value reported in the literature, with state-of-the-art electroluminescence of 12 W/cm 2 .
Dans ce travail, nous nous intéressons à la conception, à la réalisation de micro-OLEDs ultra rapides et à leur caractérisation en régime d’excitation électrique impulsionnelle nanoseconde. Les réponses ultra-rapides de ces μ-OLED sont obtenues par des électrodes spécifiques empruntées aux techniques micro-ondes. Cette combinaison de l’électronique organique et des techniques micro-ondes permet d’atteindre des valeurs record en termes de durée d'impulsion d’excitation ultra courte (5 ns) et de densité de courant ultra-intense (4,7 kA/cm2). Ces résultats ouvrent des perspectives vers la réalisation de la première diode laser organique.
A technique for parameters and rotor speed of induction motor using the combination of high-gain observer and radial basis function neuronal predictor is treated in this paper. The algorithms developed here are potentially useful for the design of the drives that can adjust controller parameters automatically. Another possible application is for the detection of failure. In the first scheme, leakage coefficient and rotor time-constant are estimated using the measured rotor speed, stator current and voltage. In the second scheme, rotor resistance is estimated when the rotor speed is available while in the third scheme, both rotor resistance and rotor speed are identified. All the parameters are considered to be time-varying and short-circuit failure is simulated in the rotor resistance. Simulation results illustrate the effectiveness of this technique.