Pyrogenic carbonaceous matter (PCM) includes environmental black carbon (fossil fuel soot, biomass char), engineered carbons (biochar, activated carbon), and related materials like graphene and nanotubes. These materials contact organic pollutants due to their widespread presence in the environment or through their use in various engineering applications. This review covers recent advances in our understanding of adsorption and chemical reactions mediated by PCM and the links between these processes. It also covers adsorptive processes previously receiving little attention and ignored in models such as steric constraints, physicochemical effects of confinement in nanopores, π interactions of aromatic compounds with polyaromatic surfaces, and very strong hydrogen bonding of ionizable compounds with surface functional groups. Although previous research has regarded carbons merely as passive sorbents, recent studies show that PCM can promote chemical reactions of sorbed contaminants at ordinary temperature, including long-range electron conduction between molecules and between microbes and molecules, local redox reactions between molecules, and hydrolysis. PCM may itself contain redox-active functional groups that are capable of oxidizing or reducing organic compounds and of generating reactive oxygen species (ROS) from oxygen, peroxides, or ozone. Amorphous carbons contain persistent free radicals that may play a role in observed redox reactions and ROS generation. Reactions mediated by PCM can impact the biogeochemical fate of pollutants and lead to useful strategies for remediation.
Advanced treatment trains based on oxidation, biofiltration, and/or granular activated carbon (Ox/BAF/GAC) are an attractive alternative to those based on microfiltration, reverse osmosis, and advanced oxidation (MF/RO/AOP) for the potable reuse of municipal wastewater effluents, but their effluent quality is difficult to validate with respect to chemical contaminants. This study evaluated the sum of the concentrations of 46 disinfection byproducts (DBPs) after treatment by chlorine or chloramines weighted by metrics of toxic potency in 10 full- or pilot-scale reuse trains to estimate the DBP-associated toxicity of their effluents. These total toxicity-weighted DBP concentrations were compared to those measured in their local, conventional drinking waters as a benchmark for water quality receiving regulatory and widespread public acceptance. The results indicated that while the DBP-associated quality of MF/RO/AOP-based reuse waters can readily exceed that of drinking waters, that of Ox/BAF/GAC-based reuse waters can approach or exceed that of drinking waters, particularly when they are chloraminated. Unregulated, halogenated DBPs were the dominant contributors to the estimated DBP-associated toxicity. While RO/AOP treatment preferentially reduced the concentrations of the more toxic brominated DBP species, BAC and GAC treatment favored brominated DBP species by removing DOC but not bromide. Comparing the total toxicity-weighted DBP concentration between reuse and drinking waters provides drinking water as a rational benchmark for water quality comparison, explicitly recognizes that contaminants occur as mixtures, provides utilities flexibility in selecting the most efficient treatment trains to reduce estimated toxicity, and can be expanded to encompass new contaminants as toxic potency data become available.
Abstract Full‐scale sampling at 16 facilities illustrated that NDMA precursor concentrations, measured by adding chloramine under Uniform Formation Conditions (NDMA UFC ), increased across biofiltration at 7 of 16 facilities (by 3–48 ng/L or 12%–296%) but stayed the same or decreased (by up to 5 ng/L or 24%) at the other nine facilities. Increases in NDMA UFC concentrations were attributed to both particulate and soluble precursors. Only two facilities had an increase in NDMA UFC greater than 10 ng/L. However, NDMA UFC concentrations in the biofilter effluent from five facilities exceeded 10 ng/L during one or more sampling events. For these facilities, testing at multiple scales showed that mitigation steps could include pretreatment with ozone (which resulted in overall lower NDMA UFC ), increased free chlorine contact time prior to ammonia addition, and/or optimized biofilter design and operation.
Swimming in pools is a healthy activity that entails exposure to disinfection by-products (DBPs), some of which are irritant and genotoxic.We evaluated exposure to DBPs during swimming in a chlorinated pool and the association with short-term changes in genotoxicity and lung epithelium permeability biomarkers.Non-smoker adults (N = 116) swimming 40 min in an indoor pool were included. We measured a range of biomarkers before and at different times after swimming: trihalomethanes (THMs) in exhaled breath (5 min), trichloroacetic acid (TCAA) in urine (30 min), micronuclei in lymphocytes (1 h), serum club cell protein (CC16) (1 h), urine mutagenicity (2 h) and micronuclei in reticulocytes (4 days in a subset, N = 19). Several DBPs in water and trichloramine in air were measured, and physical activity was extensively assessed. We estimated interactions with polymorphisms in genes related to DBP metabolism.Median level of chloroform, brominated and total THMs in water was 37.3, 9.5 and 48.5, μg/L, respectively, and trichloramine in air was 472.6 μg/m3. Median exhaled chloroform, brominated and total THMs increased after swimming by 10.9, 2.6 and 13.4, μg/m3, respectively. Creatinine-adjusted urinary TCAA increased by 3.1 μmol/mol. Micronuclei in lymphocytes and reticulocytes, urine mutagenicity and serum CC16 levels remained unchanged after swimming. Spearman correlation coefficients showed no association between DBP exposure and micronuclei in lymphocytes, urine mutagenicity and CC16. Moderate associations were observed for micronuclei in reticulocytes and DBP exposure.The unchanged levels of the short-term effect biomarkers after swimming and null associations with personal estimates of exposure to DBPs suggest no measurable effect on genotoxicity in lymphocytes, urine mutagenicity and lung epithelium permeability at the observed exposure levels. The moderate associations with micronuclei in reticulocytes require cautious interpretation given the reduced sample size.
Highly carcinogenic N-nitrosodialkylamine (nitrosamine) disinfection byproducts were quantified in chlorinated swimming pools, hot tubs, and aquaria. N-Nitrosodimethylamine, the most abundant nitrosamine detected, was measured in swimming pools and hot tubs at levels up to 500-fold greater than the drinking water concentration of 0.7 ng/L associated with a one in one million lifetime cancer risk. Temperature, enclosure, amine and nitrite precursor loading, and the use of disinfection schemes with reduced chlorine doses contributed to statistically significant variability in its occurrence. N-Nitrosodibutylamine and N-nitrosopiperidine were also detected but together represented <5% of the total analyte distribution. The presence of N-nitrodimethylamine at levels comparable to N-nitrosodimethylamine points to a competition between the nitration and nitrosation of amines in chlorinated recreational waters. Since nitrosamines can cause bladder cancer, the significance of our measurements needs clarification with respect to recent epidemiological results that are suggestive of a link between swimming in chlorinated pools and bladder cancer.
Reactions of dissolved organic matter (DOM) with photochemically generated reactive halogen species (RHS) may represent an important natural source of organohalogens within surface seawaters. However, investigation of such processes has been limited by difficulties in quantifying low dissolved organohalogen concentrations in the presence of background inorganic halides. In this work, sequential solid phase extraction (SPE) and silver-form cation exchange filtration were utilized to desalt and preconcentrate seawater DOM prior to nonspecific organohalogen analysis by ICP-MS. Using this approach, native organobromine and organoiodine contents were found to range from 3.2−6.4 × 10–4 mol Br/mol C and 1.1–3.8 × 10–4 mol I/mol C (or 19–160 nmol Br L–1 and 6–36 nmol I L–1) within a wide variety of natural seawater samples, compared with 0.6–1.2 × 10–4 mol Br/mol C and 0.6–1.1 × 10–5 mol I/mol C in terrestrial natural organic matter (NOM) isolates. Together with a chemical probe method specific for RHS, the SPE+ICP-MS approach was also employed to demonstrate formation of nanomolar levels of organobromine and organoiodine during simulated and natural solar irradiation of DOM in artificial and natural seawaters. In a typical experiment, the organobromine content of 2.1 × 10–4 mol C L–1 (2.5 mg C L–1) of Suwannee River NOM in artificial seawater increased by 69% (from 5.9 × 10–5 to 1.0 × 10–4 mol Br/mol C) during exposure to 24 h of simulated sunlight. Increasing I– concentrations (up to 2.0 × 10–7 mol L–1) promoted increases of up to 460% in organoiodine content (from 8.5 × 10–6 to 4.8 × 10–5 mol I/mol C) at the expense of organobromine formation under the same conditions. The results reported herein suggest that sunlight-driven reactions of RHS with DOM may play a significant role in marine bromine and iodine cycling.
The covalent modifications resulting from chlorine reactions with peptide-bound amino acids contribute to pathogen inactivation and disinfection byproduct (DBP) formation. Previous research suggested that histidine is the third most reactive of the seven chlorine-reactive amino acids, leading to the formation of 2-chlorohistidine, 2-oxohistidine, or low-molecular-weight byproducts such as trihalomethanes. This study demonstrates that histidine is less reactive toward formation of chlorine transformation products (transformation time scale of hours to days) than five of the seven chlorine-reactive amino acids, including tyrosine (transformation time scale of minutes). Chlorine targeted tyrosine in preference to histidine within peptides, indicating that chlorine reactions with tyrosine and other more reactive amino acids could contribute more to the structural modifications to proteins over the short time scales relevant to pathogen inactivation. Over the longer time scales relevant to disinfection byproduct formation in treatment plants or distribution systems, this study identified β-cyanoalanine as the dominant transformation product of chlorine reactions with peptide-bound histidine, with molar yields of ∼50% after 1 day. While a chlorinated histidine intermediate was observed at lower yields (maximum ∼5%), the cumulative concentration of the conventional low-molecular-weight DBPs (e.g., trihalomethanes) was ≤7%. These findings support the need to identify the high-yield initial transformation products of chlorine reactions with important precursor structures to facilitate the identification of unknown DBPs.