Neuromyelitis optica (NMO) includes transverse myelitis, optic neuritis and brain lesions. Recent studies have indicated that the brainstem is an important site of attack in NMO. Longitudinally extensive transverse myelitis (LETM) is an important component of the clinical diagnosis of NMO. The frequency of brainstem and LETM lesions, changes over time of LETM and the clinical consequences in the course of NMO have only been sparsely studied. The study was a population-based retrospective case series with clinical and magnetic resonance imaging (MRI) follow-up of 35 patients with definite NMO and a relapsing-remitting course. Brainstem lesions were observed in 25 patients, 18 in medulla oblongata (11 in area postrema). Lesions in the pons, mesencephalon and diencephalon occurred in 10, 7 and 7 patients, respectively. Lesions were symptomatic in medulla oblongata and pons, asymptomatic in mesencephalon and diencephalon. Brainstem lesions were observed significantly more often in anti-aquaporin-4 (AQP-4) antibody positive than in seronegative patients (p < 0.002). LETM was demonstrated by MRI of the spinal cord in 30/36 patients, 23/30 of whom had follow-up MRI of the spinal cord. Recurrent LETM was observed in five patients. In nine patients the LETM changed into multiple lesions during remission or treatment. Spinal cord atrophy was observed in 12/23 (52%) patients, correlating to Expanded Disability Status Scale (r = 0.88, p < 0.001). NMO patients had frequent occurrence of brainstem lesions and LETM. Brainstem lesions were associated with anti-AQP4 antibody positivity. LETM lesions differentiated over time and the outcome included relapses, fragmentation and atrophy. Correlation was observed between spinal cord atrophy and neurological disability.
The presence of unique carbohydrate structures in the glycocalyx/mucous layer of the intestine may be involved in a susceptibility to celiac disease (CD) by serving as attachment sites for bacteria. This host-microbiota interaction may influence the development of CD and possibly other diseases with autoimmune components. We examined duodenal biopsies from a total of 30 children, of which 10 had both celiac disease (CD) and type 1 diabetes (T1D); 10 had CD alone; and 10 were suspected of having gastrointestinal disease, but had normal duodenal histology (non-CD controls). Patients with both CD and T1D were examined before and after remission following a gluten-free diet. We performed lectin histochemistry using peanut agglutinin (PNA) and Ulex europaeus agglutinin (UEA) staining for Gal-β(1,3)-GalNAc and Fucα1-2Gal-R, respectively, of the glycocalyx/mucous layer. The staining was scored based on dissemination of stained structures on a scale from 0 to 3. Evaluation of the scores revealed no difference between biopsies obtained before and after remission in the group of children with both CD and T1D. A comparison of this pre-remission group with the children who had CD alone or the non-CD controls also showed no significant differences. Based on our material, we found no indication that the presence of Gal-β(1,3)-GalNAc or Fucα1-2Gal-R is involved in the susceptibility to CD, or that the disease process affects the expression of these carbohydrates.
Abstract Background Celiac disease (CeD) has an estimated prevalence of 1%–3%. The classical clinical presentation is malabsorption, but now patients may present with more subtle symptoms such as constipation, osteoporosis, or iron deficiency anemia. Children may also present with poor growth. CeD has a strong genetic component, and high-risk groups include first-degree relatives with CeD, patients with co-existing autoimmune diseases, and patients with chromosomal aberrations. Content Diagnostic tests for CeD include duodenal histology, serology, and genetic testing. Duodenal histology has traditionally been the gold standard of diagnosis. However, serological tests, especially IgA tissue transglutaminase antibodies (TTG-IgA), are widely used and diagnostic algorithms are based primarily on TTG-IgA as a starting point. Human leukocyte antigen typing may also be incorporated to determine genetic risk for CeD. Guidelines for children endorse biopsy avoidance provided high levels of TTG-IgA, with diagnostic accuracy being comparable to duodenal biopsy. Confirmation may be achieved by identifying IgA endomysial antibodies in a separate blood sample. Subjects with low positive TTG-IgA levels and subjects with IgA deficiency need a biopsy to establish a diagnosis of CeD. The clinical follow-up of CeD usually includes a repeat TTG-IgA examination. In adults, healing may be delayed or incomplete, and a rare consequence of refractory celiac disease is transformation to enteric T-cell lymphoma. Summary Laboratory testing, in particular TTG-IgA, plays a central role in the diagnosis and has an accuracy comparable to histology. Diagnostic algorithms utilizing laboratory testing are critical for the development of novel strategies to improve diagnosis.
To detect chronic hepatitis B (CHB), chronic hepatitis C (CHC) and human immunodeficiency virus (HIV) infections in dried blood spot (DBS) and compare these samples to venous blood sampling in real-life.We included prospective patients with known viral infections from drug treatment centers, a prison and outpatient clinics and included blood donors as negative controls. Five drops of finger capillary blood were spotted on filter paper, and a venous blood sample was obtained. The samples were analyzed for HBsAg, anti-HBc, anti-HBs, anti-HCV, and anti-HIV levels as well as subjected to a combined nucleic acid test (NAT) for HBV DNA, HCV RNA and HIV RNA.Samples from 404 subjects were screened (85 CHB, 116 CHC, 114 HIV and 99 blood donors). DBS had a sensitivity of > 96% and a specificity of > 98% for the detection of all three infections. NAT testing did not improve sensitivity, but correctly classified 95% of the anti-HCV-positive patients with chronic and past infections. Anti-HBc and anti-HBS showed low sensitivity in DBS (68% and 42%).DBS sampling, combined with an automated analysis system, is a feasible screening method to diagnose chronic viral hepatitis and HIV infections outside of the health care system.
This screening study was performed to determine the prevalence of coeliac disease (CD) in children with type 1 diabetes (T1D) and to estimate the clinical effects of a gluten-free diet. In the region of Southern Denmark all patients under 16 years of age with T1D were identified and 269 (89%) were included. CD was diagnosed in 33 (12.3%). Patients with CD had a lower height SDS and weight SDS and were younger at diabetes onset. After 2 years on a gluten-free diet there were significant improvements in clinical and biochemical parameters. We recommend screening of CD in all children with T1D.