Various analytical methodologies have been reported for the determination of 6-shogaol (6-SHO) and 6-gingerol (6-GIN) in ginger extracts and commercial formulations. However, green analytical methods for the determination of 6-SHO and 6-GIN, either alone or in combination, have not yet been reported in literature. Hence, the present study was aimed to develop a rapid, simple, and cheaper green reversed phase high-performance thin-layer chromatography (RP-HPTLC) densitometry method for the simultaneous determination of 6-SHO and 6-GIN in the traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The simultaneous analysis of 6-SHO and 6-GIN was carried out via RP-18 silica gel 60 F254S HPTLC plates. The mixture of green solvents, i.e., ethanol:water (6.5:3.5 v/v) was utilized as a mobile phase for the simultaneous analysis of 6-SHO and 6-GIN. The analysis of 6-SHO and 6-GIN was performed at λmax = 200 nm for 6-SHO and 6-GIN. The densitograms of 6-SHO and 6-GIN from traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were verified by obtaining their single band at Rf = 0.36 ± 0.01 for 6-SHO and Rf = 0.53 ± 0.01 for 6-GIN, compared to standard 6-SHO and 6-GIN. The green RP-HPTLC method was found to be linear, in the range of 100–700 ng/band with R2 = 0.9988 for 6-SHO and 50–600 ng/band with R2 = 0.9995 for 6-GIN. In addition, the method was recorded as “accurate, precise, robust and sensitive” for the simultaneous quantification of 6-SHO and 6-GIN in traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The amount of 6-SHO in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas was obtained as 12.1, 17.9, 10.5, and 9.6 mg/g of extract, respectively. However, the amount of 6-SHO in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 14.6, 19.7, 11.6, and 10.7 mg/g of extract, respectively. The amount of 6-GIN in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were found as 10.2, 15.1, 7.3, and 6.9 mg/g of extract, respectively. However, the amount of 6-GIN in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 12.7, 17.8, 8.8, and 7.9 mg/g of extract, respectively. Overall, the results of this study indicated that the proposed analytical technique could be effectively used for the simultaneous quantification of 6-SHO and 6-GIN in a wide range of plant extracts and commercial formulations.
Extracts of four species of seaweeds, Ulva lactuca L. (green), Liagora farinosa Lamouroux (red), Padina pavonia L. and Turbinaria ornata Turn (brown), were screened for their antimicrobial, and antimalarial activities, and binding affinity for human opioid receptors. Phytochemical analysis led to the isolation and identification of 10 constituents: fucosterol, stearic acid, palmitic acid, palmitoleic acid, oleic acid, myristic acid, p-hydroxybenzoic acid, beta-sitosterol, glycerol-1-olyl-3-palmotyl-2-galactoside, and glycerol-1,3-diolyl, The last two compounds displayed strong binding affinity to delta opioid receptors.
Over 11,000 scientific papers have been published on cannabis and its constituents. The purpose of the present review is to update the number of known natural constituents of the Cannabis plant to reach 483 compounds. Emphasis will be placed on those compounds actually isolated or identified from 1980 until 1994.
Two new polyacetylene thiophenes, echinopsacetylenes A and B (1 and 2), were isolated from the roots of Echinops transiliensis. The structures of 1 and 2 were elucidated on the basis of spectroscopic analyses and chemical transformations. Echinopsacetylenes A (1) is the first natural product possessing an α-terthienyl moiety covalently linked with another thiophene moiety. Echinopsacetylenes B (2) is the first natural thiophene conjugated with a fatty acid moiety. Echinopsacetylene A (1) showed toxicity against the Formosoan subterranean termite (Coptotermes formosanus).
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
From the leaves and bark of Zanthoxylum monophyllum, a new lignan, 3-methoxy-3′,4′-methylenedioxylignan-4,8,9,9′-tetraol (1), has been isolated along with 22 known compounds (2–23), fifteen of them reported for the first time from Z. monophyllum. Their chemical structures were elucidated using detailed spectroscopic studies and chemical analysis. All compounds were evaluated for antimicrobial and antiprotozoal activities. Alkaloids bis-[6-(5,6-dihydro-chelerythrinyl)] ether (2) and 6-ethoxy-chelerythrine (4) exhibited strong activity against Aspergillus fumigatus and methicillin-resistant Staphylococcus aureus (MRSA). Compound 4-methoxy-N-methyl-2-quinolone (9) exhibited significant activity against MRSA (IC50 value of 8.0 µM) while compound 5,8,4′-trihydroxy-3,7,3′-trimethoxyflavone (10) showed weak activity against Plasmodium falciparum.