Laboratory based cycling time trials (TT) are widely used by both researchers and practitioners, as a method of assessing cycling performance in a controlled environment. Assessments of performance often use TT durations or distances between 20 min and one hour and in the UK the 10 mile (16.1 km) TT is the most frequently used race distance for trained cyclists. The 16.1 km TT has received relatively minimal, but increased attention as a performance criterion in the literature. Therefore, the aim of this study was to assess the reliability of 16.1 km TT performance in a large cohort of trained cyclists using the CompuTrainer cycling ergometer. Trained male cyclists (n = 58, mean±SD age 35±7 yr, height 179±6 cm, weight 79.1±9.4 kg, VO2max. 56.6±6.6 ml.kg.min-1, PPO 365±37 W) performed an initial incremental exercise test to determine PPO and VO2max. The participants then performed two 16.1 km TT on a CompuTrainer cycle ergometer separated by 3-7 days. Differences in time, power output and speed were determined using a Wilcoxon signed ranks or paired t-tests. Reproducibility of the TT performance measures was performed using the coefficient of variation (CV), intraclass correlations, and typical error (TE). There were no differences between any of the performance criteria for the whole cohort (Mean difference = 0.06 min, 0.09 km.h-1, 1.5 W, for time, mean speed and power respectively) between TT1 and TT2. All TT performance data were very reproducible (CV range = 1.1-2.7%) and demonstrated trivial or small TE. The slower cyclists demonstrated marginally lower reliability (CV range = 1.3-3.2%) compared to the fastest group (CV range = 0.7-2.0%). The 16.1 km TT on the CompuTrainer represents a very reliable performance criterion for trained cyclists. Interpretation of test-retest performance outcomes should be performed in the context of the TE of each performance indicator.
The psychological construct of affect is proposed to significantly contribute to pacing decisions during exercise. Borg's RPE scale, another important regulator of work rate, is criticized as an inadequate measure of the multiple perceptual responses experienced. This study aimed to examine power output distribution and associated changes in affect, self-efficacy, perceptual cues, HR, and respiratory gases during both 16.1- and 40-km self-paced cycling time trials (TT). Secondly, the differentiation between physical perceptions of exertion and sense of effort in self-paced exercise was investigated.Fifteen trained male cyclists completed 16.1- and 40-km TT using a CompuTrainer cycle ergometer. Time, power output distribution, affect, self-efficacy, physical RPE (P-RPE), task effort and awareness (TEA), HR, and respiratory gases were measured throughout each TT. Linear mixed models explored associations of these variables with power output distribution and the relationship between P-RPE and TEA.Similar pacing strategies were adopted in the 16.1- and 40-km TT (P = 0.31), and the main effects were found for affect (P = 0.001) and RER (P < 0.001). Interactions between affect (P = 0.037) and RER (P = 0.004), with condition, indicated closer associations with power output distribution in 16.1 km than that in 40 km TT. P-RPE was not significantly different from TEA (P = 0.053).A significant association between affect and power output distribution suggests that affective responses are task dependent even in self-paced exercise, and a greater association is demonstrated in higher intensity, 16.1 km TT. Furthermore, physical perceptions of exertion are not clearly differentiated from the sense of effort in self-paced exercise.
<p>Figure S3 - PDF file 113K, Figure S3. Tumor growth is abrogated after anti-CTLA-4 and GWEPDDNPI therapy. Mice were injected s.c. with 2 x 106 AgN2a (A) or NXS2 (B) neuroblastoma cells. Tumour growth was monitored throughout and the average of two perpendicular measurements was determined. Mice were culled when tumour size reached greater than 225 mm2. Data represents an example of three experiments, where n = 5 mice / group</p>
Significance Cyclosporine A was one of the first drugs used in clinical practice to successfully rescue glucocorticoid-resistant inflammatory diseases. In this article we extend the characterization of glucocorticoid-resistant human Th17 cells, and demonstrate that this effector memory T-cell subset is reciprocally attenuated by cyclosporine A. This therapeutic paradigm was confirmed in a murine model of autoimmunity, refining our understanding of cyclosporine A’s effect on the adaptive immune response. These data support the rationale for Th17-targeting therapies in the treatment of glucocorticoid-resistant inflammation.
From the Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland Ohio. Accepted for publication February 9, 2018. Funding: None. The authors declare no conflicts of interest. Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website. Address correspondence to Emily Williams, MD, 640 Jackson St, St. Paul, MN 55101. Address e-mail to [email protected].
The provision of performance-related feedback during exercise is acknowledged as an influential external cue used to inform pacing decisions. The provision of this feedback in a challenging or deceptive context allows research to explore how feedback can be used to improve performance and influence perceptual responses. However, the effects of deception on both acute and residual responses have yet to be explored, despite potential application for performance enhancement. Therefore, this study investigated the effects of challenging and deceptive feedback on perceptual responses and performance in self-paced cycling time trials (TT) and explored whether changes in performance are sustained in a subsequent TT following the disclosure of the deception. Seventeen trained male cyclists were assigned to either an accurate or deceptive feedback group and performed four 16.1 km cycling TTs; (1 and 2) ride-alone baseline TTs where a fastest baseline (FBL) performance was identified, (3) a TT against a virtual avatar representing 102% of their FBL performance (PACER), and (4) a subsequent ride-alone TT (SUB). The deception group, however, were initially informed that the avatar accurately represented their FBL, but prior to SUB were correctly informed of the nature of the avatar. Affect, self-efficacy and RPE were measured every quartile. Both groups performed PACER faster than FBL and SUB (p < 0.05) and experienced lower affect (p = 0.016), lower self-efficacy (p = 0.011), and higher RPE (p < 0.001) in PACER than FBL. No significant differences were found between FBL and SUB for any variable. The presence of the pacer rather than the manipulation of performance beliefs acutely facilitates TT performance and perceptual responses. Revealing that athletes' performance beliefs were falsely negative due to deceptive feedback provision has no effect on subsequent perceptions or performance. A single experiential exposure may not be sufficient to produce meaningful changes in the performance beliefs of trained individuals beyond the acute setting.
Athletes anticipatorily set and continuously adjust pacing strategies before and during events to produce optimal performance. Self-regulation ensures maximal effort is exerted in correspondence with the end point of exercise, while preventing physiological changes that are detrimental and disruptive to homeostatic control. The integration of feedforward and feedback information, together with the proposed brain's performance modifiers is said to be fundamental to this anticipatory and continuous regulation of exercise. The manipulation of central, regulatory internal and external stimuli has been a key focus within deception research, attempting to influence the self-regulation of exercise and induce improvements in performance. Methods of manipulating performance modifiers such as unknown task end point, deceived duration or intensity feedback, self-belief, or previous experience create a challenge within research, as although they contextualize theoretical propositions, there are few ecological and practical approaches which integrate theory with practice. In addition, the different methods and measures demonstrated in manipulation studies have produced inconsistent results. This review examines and critically evaluates the current methods of how specific centrally controlled performance modifiers have been manipulated, within previous deception studies. From the 31 studies reviewed, 10 reported positive effects on performance, encouraging future investigations to explore the mechanisms responsible for influencing pacing and consequently how deceptive approaches can further facilitate performance. The review acts to discuss the use of expectation manipulation not only to examine which methods of deception are successful in facilitating performance but also to understand further the key components used in the regulation of exercise and performance.
This study determined variability in time-to-peak pH after consumption of 300 mg kg−1 of sodium bicarbonate. Seventeen participants (mean ± SD: age 21.38 ± 1.5 years; mass 75.8 ± 5.8 kg; height 176.8 ± 7.6 cm) reported to the laboratory where a resting capillary sample was taken. Then, 300 mg kg−1 of NaHCO3 in 450 ml of flavoured water was ingested. Participants rested for 90 min and repeated blood samples were procured at 10 min intervals for 60 min and then every 5 min until 90 min. Blood pH concentrations were measured. Results suggested that time-to-peak pH (64.41 ± 18.78 min) was variable with a range of 10–85 min and a coefficient of variation of 29.16%. A bimodal distribution occurred, at 65 and 75 min. In conclusion, athletes, when using NaHCO3 as an ergogenic aid, should determine their time-to-peak pH to best utilize the added buffering capacity this substance allows.