Obesity is associated with chronic low-grade inflammation, characterised by the up-regulation of pro-inflammatory cytokines in obese adipose tissue. In this study, 3T3-L1 CM enhanced TNF-α and IL-1β in RAW 264.7 cells compared with LPS treated cells. However, treatment with Varanadi kashayam suppressed the inflammatory changes associated with RAW 264.7 cells. Subsequently, RAW CM used to stimulate adipocytes, resulting in decreased intracellular lipid content and reduced adipogenic markers after Varanadi kashayam treatment. The chemical profiling of Varanadi kashayam using UHPLC-Q-Orbitrap-HRMS identified 194 compounds by comparing their retention time, the experimentally measured exact mass of precursor, and fragmented ions, and fragmentation pattern with spectral library and reported literature. Collectively, Varanadi kashayam act as a potent anti-inflammatory and anti-adipogenic agent that could disrupt the crosstalk between adipocytes and macrophages. Hence it could be a better candidate for reducing inflammation associated with obese adipose tissue.
Obesity is associated with chronic low-grade inflammation, characterised by the up-regulation of pro-inflammatory cytokines in obese adipose tissue. In this study, 3T3-L1 CM enhanced TNF-α and IL-1β in RAW 264.7 cells compared with LPS treated cells. However, treatment with Varanadi kashayam suppressed the inflammatory changes associated with RAW 264.7 cells. Subsequently, RAW CM used to stimulate adipocytes, resulting in decreased intracellular lipid content and reduced adipogenic markers after Varanadi kashayam treatment. The chemical profiling of Varanadi kashayam using UHPLC-Q-Orbitrap-HRMS identified 194 compounds by comparing their retention time, the experimentally measured exact mass of precursor, and fragmented ions, and fragmentation pattern with spectral library and reported literature. Collectively, Varanadi kashayam act as a potent anti-inflammatory and anti-adipogenic agent that could disrupt the crosstalk between adipocytes and macrophages. Hence it could be a better candidate for reducing inflammation associated with obese adipose tissue.
Background Nigella sativa (black cumin, or black seed) is popularly known as the seed of blessings in the Arab system of medicine. Though not widely recommended for sleep, a unique proprietary black cumin extract (BlaQmax®/ThymoDream™; BCO-5) has been shown to be helpful in the management of stress and sleep issues. Methods This randomized, double-blind, placebo-controlled trial aimed to investigate the efficacy of BCO-5 on the sleep quality of volunteers characterized with a self-reported non-restorative sleep disorder. Healthy male and female participants ( n = 70), aged 18-65 years (BMI 22-28 Kg/m 2 ) were randomized to either placebo or BCO-5 ( n = 35/group). Both interventions were supplemented at 200 mg/day for seven days. Actigraphy and a validated restorative sleep questionnaire (RSQ-W) were used to monitor the influence of BCO-5 on sleep. Results Compared to placebo, BCO-5 significantly improved sleep quality, as evidenced by both intra-group and inter-group analyses of the actigraphy data. The relative improvements observed were sleep efficiency (7.8%, p < 0.001), total sleep time (19.1%, p < 0.001), sleep onset latency (35.4%; p < 0.001), and wake-after-sleep-onset (22.5%; p < 0.001) compared with placebo. BCO-5 also improved sleep by 75.3% compared to baseline ( p < 0.001) and by 68.9% compared to placebo ( p < 0.001), when monitored by RSQ-W. BCO-5 was well-tolerated with no reports of side effects or toxicity. Conclusion BCO-5 significantly improved non-restorative sleep in seven days, indicating its potential role as a natural sleep aid.
Abstract Catechin, a flavonol belonging to the flavonoid group of polyphenols is present in many plant foods. The present study was done to evaluate the effect of catechin on various inflammatory mediators using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The effect of catechin on total cyclooxygenase (COX) activity, 5-lipoxygenase (5-LOX), myeloperoxidase, nitrite and inducible nitric oxide synthase (iNOS) level, secretion of tumour necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were assessed in LPS-stimulated RAW 264.7 cells. The expression of COX-2, iNOS, TNF-α, nuclear factor-ĸB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) genes were also investigated. The effect was further analyzed using human PBMCs by assessing the level of TNF-α and IL-10. The study demonstrated that the inflammatory mediators such as COX, 5-LOX, nitrite, iNOS, and TNF-α were significantly inhibited by catechin in a dose-dependent manner whereas IL-10 production was up-regulated in RAW 264.7 cells. Moreover, catechin down-regulated the mRNA level expression of COX-2, iNOS, TNF-α, NF-κB and p38 MAPK. The current study ratifies the beneficial effect of catechin as a dietary component in plant foods to provide protection against inflammatory diseases.
Variations in the size and shape of jugular foramen are of considerable importance. An abnormal and partial obliteration of jugular foramen by a bony growth were observed in three skulls during osteology demonstration classes for medical undergraduates. Jugular foramen transmits important cranial nerves (IX, X, XI), internal jugular vein and inferior petrosal sinus. So, narrowing of the jugular foramen might result in neurovascular symptoms, a condition called Vernet’s syndrome, which is discussed along with the case. The knowledge of this bony abnormality is of great importance to neurologists, radiologists, anthropologists and neurosurgeons.