We assess how well the Next-Generation Attenuation-West 2 (NGA-West2) ground-motion models (GMMs), which are used in the US Geological Survey’s (USGS) National Seismic Hazard Model (NSHM) for crustal faults in the western United States, predict the observed basin response in the Great Valley of California, the Reno basin in Nevada, and Portland and Tualatin basins in Oregon. These GMMs rely on site parameters such as the time-averaged shear-wave velocity ( V S ) in the upper 30 m of Earth’s crust ( V S30 ) and depths to 1.0 and 2.5 km/s shear-wave isosurfaces ( Z 1.0 and Z 2.5 ) to capture basin effects and were developed using observations and simulations primarily from the Los Angeles region in southern California. Using ground-motion records from mostly small-to-moderate earthquakes and mixed-effects regression analysis, we find that the GMMs perform well with our local basin-depth models for the California Great Valley. With our local basin-depth models for Reno, the GMMs do not perform as well for this relatively shallow basin and exhibit little sensitivity to the basin parameters used in the NGA-West2 GMMs. We also find good performance for the local Z 1.0 model across the Portland region, whereas the local Z 2.5 model provides little predictive power except at sites in the deepest part of the Tualatin basin. Additional work could improve the performance of the site and basin terms in the NGA-West2 GMMs for regions with geologic structure different than the deep basins in southern California and the Great Valley. In addition, we find significant discrepancies among the GMMs in how the uncertainty in the ground motion varies with basin depth and pseudospectral period. Our results can help guide seismic hazard analyses on whether to include these local basin-depth models.
Abstract Reflection and critically refracted seismic methods use traveltime measurements of body waves propagating between a source and a series of receivers on the ground surface to calculate subsurface velocities. Body wave energy is refracted or reflected at boundaries where there is a change in seismic impedance, defined as the product of material density and seismic velocity. This article provides practical guidance on the use of horizontally propagating shear wave (SH-wave) refraction and reflection methods to determine shear wave velocity as a function of depth for near-surface seismic site characterizations. Method principles and the current state of engineering practice are reviewed, along with discussions of limitations and uncertainty assessments. Typical data collection procedures are described using basic survey equipment, along with information on more advanced applications and emerging technologies. Eight case studies provide examples of the techniques in real-world seismic site characterizations performed in a variety of geological settings.
ABSTRACT We analyze multimethod shear (SH)-wave velocity (VS) site characterization data acquired at three permanent and 25 temporary seismograph stations in Oklahoma that recorded M 4+ earthquakes within a 50 km hypocentral distance of at least one of the 2016 M 5.1 Fairview, M 5.8 Pawnee, or M 5.0 Cushing earthquakes to better constrain earthquake ground-motion modeling in the region. We acquired active-source seismic data for time-averaged VS to 30 m depth (VS30) at 28 seismograph stations near the Fairview, Pawnee, and Cushing epicentral areas. The SH-wave refraction travel times coupled with Rayleigh- and Love-wave phase velocity dispersion were extracted and modeled in a nonlinear least-squares (L2) joint inversion to obtain a best-fit 1D VS versus depth profile for each site. At a subset of sites where the preferred L2 inverse model did not optimally fit each of the Love, Rayleigh, and SH travel-time datasets, we explore application of simulated annealing in a joint inversion to find a more global solution. VS30 values range from 262 to 807 m/s for the preferred measured (in situ) VS profiles, or National Earthquake Hazards Reduction Program (NEHRP) site class D to B, and are broadly comparable with estimates from previous data reports in the region. Site amplification estimates were calculated next from 1D SH transfer functions of the preferred VS profiles and then compared against observed horizontal-to-vertical spectral ratios (HVSRs) from nearby seismograph stations. We generally see good agreement between the predicted in situ model and the observed HVSR resonant frequencies, with nominal amplifications between 2 and 10 within the 2–15 Hz frequency band. Next, using 40 known in situ VS30 measurements in the region, we demonstrate that the in situ VS30 values improve the fit for selected suites of ground-motion models (GMMs) for M 4+ earthquakes within a 50 km hypocentral distance when compared with proxy methods, arguing for future development of GMMs implementing in situ VS profiles.
For additional information, contact: Contact Information, Menlo Park, Calif. Office—Earthquake Science Center U.S. Geological Survey 345 Middlefield Road, MS 977 Menlo Park, CA 94025 http://earthquake.usgs.gov/ VS30, the time-averaged shear-wave velocity (VS) to a depth of 30 meters, is a key index adopted by the earthquake engineering community to account for seismic site conditions. VS30 is typically based on geophysical measurements of VS derived from invasive and noninvasive techniques at sites of interest. Owing to cost considerations, as well as logistical and environmental concerns, VS30 data are sparse or not readily available for most areas. Where data are available, VS30 values are often assembled in assorted formats that are accessible from disparate and (or) impermanent Web sites. To help remedy this situation, we compiled VS30 measurements obtained by studies funded by the U.S. Geological Survey (USGS) and other governmental agencies. Thus far, we have compiled VS30 values for 2,997 sites in the United States, along with metadata for each measurement from government-sponsored reports, Web sites, and scientific and engineering journals. Most of the data in our VS30 compilation originated from publications directly reporting the work of field investigators. A small subset (less than 20 percent) of VS30 values was previously compiled by the USGS and other research institutions. Whenever possible, VS30 originating from these earlier compilations were crosschecked against published reports. Both downhole and surface-based VS30 estimates are represented in our VS30 compilation. Most of the VS30 data are for sites in the western contiguous United States (2,141 sites), whereas 786 VS30 values are for sites in the Central and Eastern United States; 70 values are for sites in other parts of the United States, including Alaska (15 sites), Hawaii (30 sites), and Puerto Rico (25 sites). An interactive map is hosted on the primary USGS Web site for accessing VS30 data (https://earthquake.usgs.gov/data/vs30/us/).
Abstract Microtremor array measurements, and passive surface wave methods in general, have been increasingly used to non-invasively estimate shear-wave velocity structures for various purposes. The methods estimate dispersion curves and invert them for retrieving S-wave velocity profiles. This paper summarizes principles, limitations, data collection, and processing methods. It intends to enable students and practitioners to understand the principles needed to plan a microtremor array investigation, record and process the data, and evaluate the quality of investigation result. The paper focuses on the spatial autocorrelation processing method among microtremor array processing methods because of its relatively simple calculation and stable applicability. Highlights 1. A summary of fundamental principles of calculating phase velocity from ambient noise 2. General recommendations for MAM data collection and processing using SPAC methods 3. A discussion of limitations and uncertainties in the methods