Abstract Background Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro . However, the status of NFIB in prostate cancer was unknown. Methods We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blotting and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed coimmunoprecipitation studies to determine if NFIB and AR interact. Results NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castrationresistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through coimmunoprecipitation experiments. Conclusion We have described the expression pattern of NFIB in primary and castrationresistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.
Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells.Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN.OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines.OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
In advanced prostate cancer, resistance to androgen deprivation therapy is achieved through numerous mechanisms, including loss of the androgen receptor (AR) allowing for AR-independent growth. Therapeutic options are limited for AR-independent castration-resistant prostate cancer (CRPC), and defining mechanisms critical for survival is of utmost importance for targeting this lethal disease. Our studies focus on identifying telomere maintenance mechanism (TMM) hallmarks adopted by CRPC to promote survival. TMMs are responsible for telomere elongation to instill replicative immortality and prevent senescence, with the two TMM pathways available being telomerase and alternative lengthening of telomeres (ALT). Here, we show that AR-independent CRPC demonstrates an atypical ALT-like phenotype with variable telomerase expression and activity, whereas AR-dependent models lack discernible ALT hallmarks. In addition, AR-independent CRPC cells exhibited elevated levels of SLX4IP, a protein implicated in promoting ALT. SLX4IP overexpression in AR-dependent C4-2B cells promoted an ALT-like phenotype and telomere maintenance. SLX4IP knockdown in AR-independent DU145 and PC-3 cells led to ALT-like hallmark reduction, telomere shortening, and induction of senescence. In PC-3 xenografts, this effect translated to reduced tumor volume. Using an
<div>Abstract<p>Castration-resistant prostate cancer can be treated with the antiandrogen enzalutamide, but responses and duration of response are variable. To identify genes that support enzalutamide resistance, we performed a short hairpin RNA (shRNA) screen in the bone-homing, castration-resistant prostate cancer cell line, C4-2B. We identified 11 genes (<i>TFAP2C, CAD, SPDEF, EIF6, GABRG2, CDC37, PSMD12, COL5A2, AR, MAP3K11,</i> and <i>ACAT1</i>) whose loss resulted in decreased cell survival in response to enzalutamide. To validate our screen, we performed transient knockdowns in C4-2B and 22Rv1 cells and evaluated cell survival in response to enzalutamide. Through these studies, we validated three genes (<i>ACAT1, MAP3K11,</i> and <i>PSMD12</i>) as supporters of enzalutamide resistance <i>in vitro</i>. Although <i>ACAT1</i> expression is lower in metastatic castration-resistant prostate cancer samples versus primary prostate cancer samples, knockdown of <i>ACAT1</i> was sufficient to reduce cell survival in C4-2B and 22Rv1 cells. <i>MAP3K11</i> expression increases with Gleason grade, and the highest expression is observed in metastatic castration-resistant disease. Knockdown of <i>MAP3K11</i> reduced cell survival, and pharmacologic inhibition of MAP3K11 with CEP-1347 in combination with enzalutamide resulted in a dramatic increase in cell death. This was associated with decreased phosphorylation of AR-Serine650, which is required for maximal AR activation. Finally, although <i>PSMD12</i> expression did not change during disease progression, knockdown of <i>PSMD12</i> resulted in decreased AR and AR splice variant expression, likely contributing to the C4-2B and 22Rv1 decrease in cell survival. Our study has therefore identified at least three new supporters of enzalutamide resistance in castration-resistant prostate cancer cells <i>in vitro</i>.</p></div>
Abstract Background Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often use LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a pro-inflammatory and pro-fibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to pro-inflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. Methods Immunohistochemistry was performed on prostate sections obtained from the transition zone (TZ) of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS i.e. surgical BPH (S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging system and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by ELISA. qPCR was used to measure gene expression changes in these cells in response to OPN. Results OPN immunostaining (p=0.0107) and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1 , CXCL2 , CXCL8 , PTGS2 and IL6 in BHPrS-1, but not in epithelial cell lines. Conclusions OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by pro-inflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of pro-inflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
<p>S1: Validation of TMM characterization techniques. S2: Expression of SLX4IP in mCRPC versus primary disease. S3: SLX4IP knockdown correlates with accelerated telomere shortening. S4: SLX4IP knockdown is accompanied by a blunted atypical ALT phenotype. S5: SLX4IP knockdown promotes telomere shortening and senescence. S6: Androgen-independent marker expression and telomere length changes following androgen deprivation.</p>
<p>S1: Validation of TMM characterization techniques. S2: Expression of SLX4IP in mCRPC versus primary disease. S3: SLX4IP knockdown correlates with accelerated telomere shortening. S4: SLX4IP knockdown is accompanied by a blunted atypical ALT phenotype. S5: SLX4IP knockdown promotes telomere shortening and senescence. S6: Androgen-independent marker expression and telomere length changes following androgen deprivation.</p>
ABSTRACT In advanced prostate cancer, resistance to androgen deprivation therapy is achieved through numerous mechanisms, including loss of the androgen receptor (AR) allowing for AR-independent growth. Therapeutic options are limited for AR-independent castration-resistant prostate cancer, and defining mechanisms critical for its survival is of utmost importance for targeting this lethal disease. Our studies have focused on defining the telomere maintenance mechanism (TMM) required for castration-resistant prostate cancer (CRPC) cell survival. TMMs are responsible for telomere elongation to instill replicative immortality and prevent senescence, with the two TMM pathways available being telomerase and alternative lengthening of telomeres (ALT). Here, we show that AR-independent CRPC exhibits ALT hallmarks and limited telomerase expression and activity, whereas AR-dependent models use telomerase for telomere maintenance. AR-independent CRPC exhibited elevated levels of SLX4IP, a protein implicated in TMM switching. SLX4IP overexpression in AR-dependent CRPC C4-2B cells promoted ALT hallmarks in vitro . SLX4IP knockdown in AR-independent CRPC cells (DU145 and PC-3) led to the loss of ALT hallmarks, dramatic telomere shortening, induction of senescence, and reduced tumor volume. Using an in vitro model of CRPC progression, induction of neuroendocrine differentiation in AR-dependent CRPC cells promoted ALT hallmarks in an SLX4IP-dependent manner. Lack of sufficient SLX4IP expression prevented ALT hallmarks rendering a TMM deficient environment, thus inducing senescence. This study demonstrates a unique reliance of AR-independent CRPC on SLX4IP-mediated ALT. Furthermore, ALT hallmark inhibition via SLX4IP induces senescence, thereby abolishing the replicative immortality of AR-independent CRPC.