Omega-3 fatty acids from fish oil (FO) and selenium (Se) potentiate some conventional therapies and have anticancer immune potential. This study aims to determine whether FO/Se modulates G-protein-coupled polyunsaturated fatty acid receptors (GPR-40 and GPR-120) and selenoproteins (Sel-H, Sel-W, and GPx4), and increases the therapeutic effect of doxorubicin in a dose-dependent manner on triple-negative breast cancer (TNBC) mouse. Mice were randomized into 5 groups (n = 7/group) and treated with physiological saline (control), low-dose doxorubicin, and doxorubicin in combination with low, medium, or high doses of FO/Se. The expression of signaling molecules in tumors was determined by measuring either mRNA or protein expression. Compared with doxorubicin alone, combination treatment resulted in lower tumor sizes and fewer overall metastasis, lower GPR-40 mRNA levels, and higher expression of all selenoproteins. Doxorubicin-FO/Se combination treatment decreased expression of membrane EGFR and FGFR, down-regulated downstream PI3K/AKT/mTOR, MAPK/ERK, and JAK2/c-Src/STAT3 signaling, increased tumor suppressor PTEN/TSC1/TSC2 expression and P53 activation, and suppressed oncogenic transcription factor expression. Dose-dependent inhibition of proliferation index Ki-67, cell cycle, and stem-cell-related markers were observed. Decreased immune check-points PD-L1/CTLA-4/Foxp3/CD86 and increased PD-1/CD28/IL-2 expression was also found. These observations suggest that the nutritional supplements FO/Se increase the chemotherapeutic efficacy of doxorubicin against TNBC by modulating GPR-40 and selenoprotein and targeting multiple signaling pathways in tumor tissues.
We investigated risk factors for treatment interruption (TI) in patients with locally advanced head and neck squamous-cell carcinoma (LAHNSCC) following concurrent chemoradiotherapy (CCRT), under the provision of recommended calorie and protein intake; we also evaluated the associations between clinicopathological variables, calorie and protein supply, nutrition-inflammation biomarkers (NIBs), total body composition change (TBC), and a four-serum-amino-acid metabolite panel (histidine, leucine, ornithine, and phenylalanine) among these patients. Patients with LAHNSCC who completed the entire planned CCRT course and received at least 25 kcal/kg/day and 1 g of protein/kg/day during CCRT were prospectively recruited. Clinicopathological variables, anthropometric data, blood NIBs, CCRT-related factors, TBC data, and metabolite panels before and after treatment were collected; 44 patients with LAHNSCC were enrolled. Nine patients (20.4%) experienced TIs. Patients with TIs experienced greater reductions in hemoglobin, serum levels of albumin, uric acid, histidine, and appendicular skeletal mass, and suffered from more grade 3/4 toxicities than those with no TI. Neither increased daily calorie supply (≥30 kcal/kg/day) nor feeding tube placement was correlated with TI. Multivariate analysis showed that treatment-interval changes in serum albumin and histidine levels, but not treatment toxicity, were independently associated with TI. Thus, changes in serum levels of albumin and histidine over the treatment course could cause TI in patients with LAHNSCC following CCRT.
Selenium (Se) and fish oil (FO) exert anti-epidermal growth factor receptor (EGFR) action on tumors. This study aimed to compare the anti-cancer efficacy of EGFR inhibitors (gefitinib and erlotinib) alone and in combination with nutritional supplements of Se/FO in treating lung cancer. Lewis LLC1 tumor-bearing mice were treated with a vehicle or Se/FO, gefitinib or gefitinib plus Se/FO, and erlotinib or erlotinib plus Se/FO. The tumors were assessed for mRNA and protein expressions of relevant signaling molecules. Untreated tumor-bearing mice had the lowest body weight and highest tumor weight and volume of all the mice. Mice receiving the combination treatment with Se/FO and gefitinib or erlotinib had a lower tumor volume and weight and fewer metastases than did those treated with gefitinib or erlotinib alone. The combination treatment exhibited greater alterations in receptor signaling molecules (lower EGFR/TGF-β/TβR/AXL/Wnt3a/Wnt5a/FZD7/β-catenin; higher GSK-3β) and immune checkpoint molecules (lower PD-1/PD-L1/CD80/CTLA-4/IL-6; higher NKp46/CD16/CD28/IL-2). These mouse tumors also had lower angiogenesis, cancer stemness, epithelial to mesenchymal transitions, metastases, and proliferation of Ki-67, as well as higher cell cycle arrest and apoptosis. These preliminary results showed the Se/FO treatment enhanced the therapeutic efficacies of gefitinib and erlotinib via modulating multiple signaling pathways in an LLC1-bearing mouse model.
Few prospective cohort trials have investigted the effect of pretreatment nutritional and inflammatory status on the clinical outcome of patients with cancer and optimal performance status and assessed the interplay between nutrition, inflammation, body composition, and circulating metabolites before treatment. Here, 50 patients with locally advanced head and neck squamous cell carcinoma (LAHNSCC) and Eastern Cooperative Oncology Group performance status (ECOG PS) ≤ 2 were prospectively recruited along with 43 healthy participants. Before concurrent chemoradiotherapy, compared with healthy controls, the cancer group showed lower levels of histidine, leucine, and phenylalanine and had low values in anthropometric and body composition measurements; however, the group displayed higher ornithine levels, more malnutrition, and severe inflammation. Pretreatment advanced Glasgow prognostic score (1 and 2) status was the sole prognostic factor for 3-year mortality rate and was associated with age and serum histidine levels in patients with cancer. Thus, even at the same tumor stage and ECOG PS, patients with LAHNSCC, poor nutrition, and high inflammation severity at baseline may have inferior survival outcomes than those with adequate nutrition and low inflammation severity. Assessment of pretreatment nutritional and inflammatory status should be included in the enrollment criteria in future studies.
Fish oil (FO) and selenium (Se) possess antiangiogenic potential in malignant tumors. This study aimed to determine whether combination of FO and Se enhanced treatment efficacy of low-dose antiangiogenic agent Avastin (bevacizumab) in a dose-dependent manner and targeted multiple signaling pathways in triple-negative breast cancer (TNBC)-bearing mice. Randomized into five groups, mice received treatment with either physiological saline (control), Avastin alone, or Avastin in combination with low, medium, and high doses of FO/Se. The target signaling molecules for anticancer were determined either by measuring protein or mRNA expression. Avastin-treated mice receiving FO/Se showed lower tumor growth and metastasis than did mice treated with Avastin alone. Combination-treated mice exhibited lower expressions in multiple proangiogenic (growth) factors and their membrane receptors, and altered cytoplasmic signaling molecules (PI3K-PTEN-AKT-TSC-mTOR-p70S6K-4EBP1, Ras-Raf-MEK-ERK, c-Src-JAK2-STAT3-TMEPAI-Smad, LKB1-AMPK, and GSK3β/β-catenin). Dose-dependent inhibition of down-stream targets including epithelial-to-mesenchymal transition transcription factors, nuclear cyclin and cyclin-dependent kinases, cancer stem cell markers, heat shock protein (HSP-90), hypoxia-inducible factors (HIF-1α/-2α), matrix metalloprotease (MMP-9), and increased apoptosis were observed. These results suggest that combination treatment with FO and Se increases the therapeutic efficacy of Avastin against TNBC in a dose-dependent manner through multiple signaling pathways in membrane, cytoplasmic, and nucleic targets.