A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Cat allergy is a major trigger factor for respiratory reactions (asthma and rhinitis) in patients with immunoglobulin E (IgE) sensitization. In this study, we used a comprehensive panel of purified cat allergen molecules (rFel d 1, nFel d 2, rFel d 3, rFel d 4, rFel d 7, and rFel d 8) that were obtained by recombinant expression in Escherichia coli or by purification as natural proteins to study possible associations with different phenotypes of cat allergy (i.e., rhinitis, conjunctivitis, asthma, and dermatitis) by analyzing molecular IgE recognition profiles in a representative cohort of clinically well-characterized adult cat allergic subjects (n = 84). IgE levels specific to each of the allergen molecules and to natural cat allergen extract were quantified by ImmunoCAP measurements. Cumulative IgE levels specific to the cat allergen molecules correlated significantly with IgE levels specific to the cat allergen extract, indicating that the panel of allergen molecules resembled IgE epitopes of the natural allergen source. rFel d 1 represented the major cat allergen, which was recognized by 97.2% of cat allergic patients; however, rFel d 3, rFel d 4, and rFel d 7 each showed IgE reactivity in more than 50% of cat allergic patients, indicating the importance of additional allergens in cat allergy. Patients with cat-related skin symptoms showed a trend toward higher IgE levels and/or frequencies of sensitization to each of the tested allergen molecules compared with patients suffering only from rhinitis or asthma, while there were no such differences between patients with rhinitis and asthma. The IgE levels specific to allergen molecules, the IgE levels specific to cat allergen extract, and the IgE levels specific to rFel d 1 were significantly higher in patients with four different symptoms compared with patients with 1-2 symptoms. This difference was more pronounced for the sum of IgE levels specific to the allergen molecules and to cat extract than for IgE levels specific for rFel d 1 alone. Our study indicates that, in addition to rFel d 1, rFel d 3, rFel d 4, and rFel d 7 must be considered as important cat allergens. Furthermore, the cumulative sum of IgE levels specific to cat allergen molecules seems to be a biomarker for identifying patients with complex phenotypes of cat allergy. These findings are important for the diagnosis of IgE sensitization to cats and for the design of allergen-specific immunotherapies for the treatment and prevention of cat allergy.
House dust mites (HDMs) are among the most important allergen sources containing many different allergenic molecules. Analysis of patients from a double-blind, placebo-controlled allergen-specific immunotherapy (AIT) study indicated that patients may benefit from AIT to different extents depending on their molecular sensitization profiles.Our aim was to investigate in a real-life setting whether stratification of patients with HDM allergy according to molecular analysis may enhance AIT success.Serum and nasal secretion samples from patients with HDM allergy (n = 24) (at baseline, 7, 15, 33, and 52 weeks) who had received 1 year of treatment with a well-defined subcutaneous AIT form (Alutard SQ 510) were tested for IgE and IgG reactivity to 15 microarrayed HDM allergen molecules with ImmunoCAP Immuno-solid-phase Allergen Chip technology. IgG subclass levels to allergens and peptides were determined by ELISA, and IgG blocking was assessed by basophil activation. In vitro parameters were related to reduction of symptoms determined by combined symptom medication score and visual analog scale score.Alutard SQ 510 induced protective IgG mainly against Dermatophagoides pteronyssinus (Der p) 1 and Der p 2 and to a lesser extent to Der p 23, but not to the other important allergens such as Der p 5, Der p 7, and Der p 21, showing better clinical efficacy in patients sensitized only to Der p 1 and/or Der p 2 as compared with patients having additional IgE specificities.Stratification of patients with HDM allergy according to molecular sensitization profiles and molecular monitoring of AIT-induced IgG responses may enhance the success of AIT.
<b><i>Background:</i></b> The mould <i>Alternaria alternata</i> is an important source of respiratory allergens. <i>A. alternata</i> extracts show great variations regarding allergenic potency. The aim of this study was to generate antibody probes specific for important <i>Alternaria </i>allergens and to use them to study allergen expression, depending on different culture conditions, as well as to search for cross-reactive allergens in other mould species. <b><i>Methods:</i></b> Synthetic peptides from antigenic regions of <i>A. alternata</i> allergens (Alt a 1, Alt a 2, Alt a 3, Alt a 6 and Alt a 8) were used to raise highly specific rabbit antibodies. These antibodies and IgE from allergic patients were used to detect allergens by immunoblotting in extracts of 4 <i>A. alternata</i> strains grown under varying culturing conditions, in commercial skin-prick extracts and in closely (<i>Cladosporium herbarum </i>and <i>Aureobasidium pullulans</i>) or distantly related (<i>Aspergillus niger</i> and <i>Penicillium chrysogenum</i>) mould species. <b><i>Results:</i></b> There was a wide variation of expression of the individual <i>A. Alternata </i>allergens, depending on the strain and culture conditions, but the antibody probes allowed us to distinguish strains and culture conditions with low and high allergen expression. In the commercial skin-prick solutions, varying levels of Alt a 1 were found, but no other allergens were detectable. Alt a 1 was identified as species-specific <i>A. Alternata </i>allergen, whereas Alt a 3, 6- and Alt a 8-cross-reactive antigens were found in <i>C.</i><i>herbarum</i> and/or <i>A. pullulans</i>. <b><i>Conclusions and Clinical Relevance:</i></b> Peptide-specific antibodies are useful to analyze diagnostic and therapeutic mould extracts, to study the presence of <i>A. Alternata</i> allergens in biological samples and to search for cross-reactive allergens in other mould species.