We have found that syngeneic Ab2s in the antiarsonate system are serologically and structurally similar to one another. In contrast, the allogeneic Ab2 response is heterogeneous and derives from a large number of unrelated germline gene segments. The Ab2 response of the BALB/c strain to polyclonal A/J Ars A molecules can probably best be compared with a response to a foreign protein and might have been predicted in a strain that completely lacks the H chain V region gene from which the Ab1 derives. Partial variable region sequences of Ab2s from three other systems in addition to previously reported Ab2 structures indicates that this difference in allogeneic vs. syngeneic Ab2s may be a general phenomena. These data support Jerne's hypothesis of complementary V region genes existing in the germline. However, there is good evidence that these antiidiotypic antibodies are not derived directly from the germline, as somatic processes most likely play an important role in their generation. The D segments of Ab2s in the arsonate system as well as in other systems, are novel in structure and cannot easily be explained by previously described germline D segments. D-D fusion may play a role in the generation of the third hypervariable region in these antibodies.
ABSTRACT We previously demonstrated that Treponema pallidum TroA is a periplasmic metal-binding protein (MBP) with a distinctive alpha-helical backbone. To better understand the mechanisms of metal binding and release by TroA, we determined the crystal structure of the apoprotein at a resolution of 2.5 Å and compared it to that of the Zn(II)-bound form (Protein Data Bank accession code 1toa). apo-TroA shows a conformation even more closed than that of its Zn(II)-bound counterpart due to a 4° tilt of the C-terminal domain (residues 190 through 308) about an axis parallel to the poorly flexible backbone helix. This domain tilting pushes two loops (residues 248 through 253 and 277 through 286) towards the metal-binding site by more than 1 Å, resulting in an unfavorable interaction of I251 with D66. To avoid this contact, D66 shifts towards H68, one of the four Zn(II)-coordinating residues. The approach of this negative charge coincides with the flipping of the imidazole side chain of H68, resulting in the formation of a new hydrogen bond. The conformational change of H68, along with a slight rearrangement of D279, a C-terminal domain Zn(II)-coordinating residue, distorts the metal-binding site geometry, presumably causing the release of the bound metal ion. Ligand binding and release by TroA, and presumably by other members of the MBP cluster, differs from the “Venus flytrap” mechanism utilized by bacterial nonmetal solute-binding receptors.
To investigate the role in catalysis and/or substrate binding of the Walker motif residues of rat testis fructose 6-phosphate,2-kinase:fructose-2,6-bisphosphatase (Fru 6-P,2-kinase:Fru-2,6-Pase), we have constructed and characterized mutant enzymes of Asp-128, Thr-52, Asn-73, Thr-130, and Tyr-197. Replacement of Asp-128 by Ala, Asn, and Ser resulted in a small decrease in Vmax and a significant increase in Km values for both substrates. These mutants exhibited similar pH activity profiles as that of the wild type enzyme. Mutation of Thr-52 to Ala resulted in an enzyme with an infinitely high Km for both substrates and an 800-fold decreased Vmax. Substitution of Asn-73 with Ala or Asp caused a 100- and 600-fold increase, respectively in KFru 6-P with only a small increase in KATP and small changes in Vmax. Mutation of Thr-130 caused small changes in the kinetic properties. Replacement of Tyr-197 with Ser resulted in an enzyme with severely decreased binding of Fru 6-P with 3-fold decreased Vmax. A fluorescent analog of ATP, 2ʹ(3ʹ)-O-(N-methylanthraniloyl)ATP (mant-ATP) served as a substrate with Km = 0.64 μM, and Vmax = 25 milliunits/mg and was a competitive inhibitor with respect to ATP. When mant-ATP bound to the enzyme, fluorescence intensity at 440 nm increased. mant-ATP binding of the wild type and the mutant enzymes were compared using the fluorometric method. The Kd values of the T52A and D128N enzymes were infinitely high and could not be measured, while those of the other mutant enzymes increased slightly. These results provide evidence that those amino acids are involved in substrate binding, and they are consistent with the crystallographic data. The results also suggest that Asp-128 does not serve as a nucleophile in catalysis, and since there are no other potential nucleophiles in the active site, we hypothesize that the Fru 6-P,2-kinase reaction is mediated via a transition state stabilization mechanism.