Abstract The rapid urbanization and industrialization is causing worldwide water pollution, calling for advanced cleaning methods. For instance, pollutant adsorption on magnetic oxides is efficient and very practical due to the easy separation from solutions by an magnetic field. Here we review the synthesis and performance of magnetic oxides such as iron oxides, spinel ferrites, and perovskite oxides for water remediation. We present structural, optical, and magnetic properties. Magnetic oxides are also promising photocatalysts for the degradation of organic pollutants. Antimicrobial activities and adsorption of heavy metals and radionucleides are also discussed.
In this study, a nanocomposite based on copper oxide–zinc oxide nanoparticles and Gum Arabic (GA@CuO–ZnO nanocomposite) was successfully synthesized using green method for increasing antimicrobial and anticancer activities.
Abstract Global overpopulation, industrial expansion, and urbanization have generated massive amounts of wastes. This is considered as a significant worldwide challenge that requires an urgent solution. Additionally, remarkable advances in the field of biomedicine have impacted the entire spectrum of healthcare and medicine. This has paved the way for further refining of the outcomes of biomedical strategies toward early detection and treatment of different diseases. Various nanomaterials (NMs) have been dedicated to different biomedical applications including drug delivery, vaccinations, imaging modalities, and biosensors. However, toxicity is still the main factor restricting their use. NMs recycled from different types of wastes present a pioneering approach to not only avoid hazardous effects on the environment, but to also implement circular economy practices, which are crucial to attain sustainable growth. Moreover, recycled NMs have been utilized as a safe, yet revolutionary alternative with outstanding potential for many biomedical applications. This review focuses on waste recycled NMs, their synthesis, properties, and their potential for multiple biomedical applications with special emphasis on their role in the early detection and control of multiple diseases. Their pivotal therapeutic actions as antimicrobial, anticancer, antioxidant nanodrugs, and vaccines will also be outlined. The ongoing advancements in the design of recycled NMs are expanding their diagnostic and therapeutic roles for diverse biomedical applications in the era of precision medicine.
ABSTRACT The clinical syndrome appears as a dysregulated host response to infection that results in life‐threatening organ dysfunction known as Sepsis. Sepsis is a serious public health concern where for every five deaths in ICU there is one patient who dies with sepsis worldwide. Sepsis is featured as unbalanced inflammation and immunosuppression which is sustained and profound, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and the deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA‐based diagnosis and therapies for sepsis. Yet, the picture is not so straightforward because of miRNAs’ versatile and dynamic features. More research is needed to clarify the expression and role of miRNAs in sepsis and promote the use of miRNAs for sepsis management. This study provides an extensive, current, and thorough analysis of the involvement of miRNAs in sepsis. Its purpose is to encourage future research in this area, as tiny miRNAs have the potential to be used for rapid diagnosis, prognosis, and treatment of sepsis.
Bimetallic nanoparticles have received much attention recently due to their multifunctional applications, and synergistic potential at low concentrations. In the current study, bimetallic boron oxide-zinc oxide nanoparticles (B