The paper presents the analysis of two compaction methods for obtaining W/Cu Functional Graded Materials (FGMs) consisting of three layers with the following compositions (% weight): first layer 80 W/20 Cu, second layer 75 W/25 Cu, and third layer 65 W/35 Cu. Each layer composition was obtained using powders obtained through mechanical milling. The two compaction methods were Spark Plasma Sintering (SPS) and Conventional Sintering (CS). The samples obtained after the SPS and CS were investigated from morphological (scanning electron microscopy-SEM) and compositional (energy dispersive X-ray spectroscopy-EDX) points of views. Additionally, the porosities and the densities of each layer in both cases were studied. It was found that the densities of the sample's layers obtained through SPS are superior to those obtained through CS. The research emphasizes that, from a morphological point of view, the SPS process is recommended for W/Cu-FGMs, having raw materials as fine-graded powders against the CS process.
The inhibiting properties of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PyODT) on the corrosion of carbon steel in 1.0 M HCl solution were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, Raman spectroscopy, and SEM-EDX analysis. An approach based on machine learning algorithms and Raman data was also applied to follow the carbon steel degradation in different experimental conditions. The electrochemical measurements revealed that PyODT behaves as a mixed-type corrosion inhibitor, reaching an efficiency of about 93.1% at a concentration of 5 mM, after 1 h exposure to 1.0 M HCl solution. Due to the molecular adsorption and structural organization of PyODT molecules on the C-steel surface, higher inhibitive effectiveness of about 97% was obtained at 24 h immersion. The surface analysis showed a significantly reduced degradation state of the carbon steel surface in the presence of PyODT due to the inhibitor adsorption revealed by Raman spectroscopy and the presence of N and S atoms in the EDX spectra. The combination of Raman spectroscopy and machine learning algorithms was proved to be a facile and reliable tool for an incipient identification of the corrosion sites on a metallic surface exposed to corrosive environments.
Recent results have demonstrated an exceptionally high permittivity in the range 200–330 K in crystalline titanium oxide Rb 2 Ti 2 O 5 . In this article, the possibility of a structural transition giving rise to ferroelectricity is carefully inspected. In particular, X-ray diffraction, high-resolution transmission electron microscopy and Raman spectroscopy are performed. The crystal structure is shown to remain invariant and centrosymmetric at all temperatures between 90 K and 450 K. The stability of the C 2/ m structure is confirmed by density functional theory calculations. These important findings allow the existence of a conventional ferroelectric phase transition to be ruled out as a possible mechanism for the colossal permittivity and polarization observed in this material.
The nanocrystalline zinc ferrite (ZnFe2O4) powder was synthesized by high energy reactive ball milling (RM) in a planetary mill. As starting materials a mixture of commercial zinc oxide (ZnO) powder and iron oxide (Fe2O3) powder was used. The starting mixture was milled for different periods of time, up to 30 h. The milled powders were annealed for 4 h at 350 oC in order to eliminate the internal stress and to finish the solid state reaction of ferrite formation. Zinc ferrite formation was investigated by X-ray diffraction. The obtained powder has a mean crystallite size of 12 nm after 20 h of milling. Using scanning electron microscopy (SEM) the particle morphology was studied. Particles size range of the powders was also determined using a laser particle size analyser.
Here, we report synthesis and investigations of bulk and nano-sized La(0.7−x)EuxBa0.3MnO3 (x ≤ 0.4) compounds. The study presents a comparison between the structural and magnetic properties of the nano- and polycrystalline manganites La(0.7−x)EuxBa0.3MnO3, which are potential magnetocaloric materials to be used in domestic magnetic refrigeration close to room temperature. The parent compound, La0.7Ba0.3MnO3, has Curie temperature TC = 340 K. The magnetocaloric effect is at its maximum around TC. To reduce this temperature below 300 K, we partially replaced the La ions with Eu ions. A solid-state reaction was used to prepare bulk polycrystalline materials, and a sol-gel method was used for the nanoparticles. X-ray diffraction was used for the structural characterization of the compounds. Transmission electron spectroscopy (TEM) evidenced nanoparticle sizes in the range of 40–80 nm. Iodometry and inductively coupled plasma optical emission spectrometry (ICP-OES) was used to investigate the oxygen content of the studied compounds. Critical exponents were calculated for all samples, with bulk samples being governed by tricritical mean field model and nanocrystalline samples governed by the 3D Heisenberg model. The bulk sample with x = 0.05 shows room temperature phase transition TC = 297 K, which decreases with increasing x for the other samples. All nano-sized compounds show lower TC values compared to the same bulk samples. The magnetocaloric effect in bulk samples revealed a greater magnetic entropy change in a relatively narrow temperature range, while nanoparticles show lower values, but in a temperature range several times larger. The relative cooling power for bulk and nano-sized samples exhibit approximately equal values for the same substitution level, and this fact can substantially contribute to applications in magnetic refrigeration near room temperature. By combining the magnetic properties of the nano- and polycrystalline manganites, better magnetocaloric materials can be obtained.