Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.
Highly efficient OLEDs are extremely demanded for the design of highly competitive energy-saving displays and lightings. In this article, we have systematically reviewed some most effective organic materials, eleven device architectural approaches, and outcoupling techniques to realize the high efficiency OLEDs.
This article describes the synthesis and characteristics of a cyanofluorene–acetylene conjugate based blue emitter C3FLA-2. In the host doped device, C3FLA-2 shows an EQE of 8.0% and CIExyof (0.156, 0.048).