A neonate with pulmonary hypertension was supported with extracorporeal membrane oxygenation (ECMO). During ECMO support, the patient developed Enterococcus faecalis bacteremia, treated with targeted antibiotics. Despite the maximum dose of antibiotics, routine blood cultures remained positive throughout the ECMO treatment. A circuit change was performed due to buildup of thrombotic material and disseminated intravascular coagulation (DIC) inside the circuit. Thrombus formation was more extensive in the first than the second circuit. Gram-positive diplococci were present in all initial circuit clots and gram-positive masses surrounded by fibrin were found inside thrombi of the second circuit. Scanning electron microscopy (SEM) revealed a dense fibrin network with embedded red blood cells and bacteria in the first circuit. In the second circuit, SEM analysis revealed scattered micro thrombi. Polymerase chain reaction for identification of bacteria in the thrombus of the first circuit showed the same bacteria as found in blood cultures and did not achieve a sufficient signal in the second circuit. This case report shows that bacteria can nestle in thrombi of an ECMO circuit and that there is a rationale for a circuit change in a patient with persistent positive blood cultures and DIC.
Venous thromboembolic disease in childhood is a multifactorial disease. Risk factors include acquired clinical risk factors such as a central venous catheter and underlying disease, and inherited thrombophilia. Inherited thrombophilia is defined as a genetically determined tendency to develop venous thromboembolism. In contrast to adults, acquired clinical risk factors play a larger role than inherited thrombophilia in the development of thrombotic disease in children. The contributing role of inherited thrombophilia is not clear in many pediatric thrombotic events, especially catheter-related thrombosis. Furthermore, identification of inherited thrombophilia will not often influence acute management of the thrombotic event as well as the duration of anticoagulation. In some patients, however, detection of inherited thrombophilia may lead to identification of other family members who can be counseled for their thrombotic risk. This article discusses the potential arguments for testing of inherited thrombophilia, including factor V Leiden mutation, prothrombin mutation, and deficiencies of antithrombin, protein C, or protein S, and suggests some patient groups in childhood, that may be tested.
Essentials A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow-up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%.Background The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow-up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patients, genetic information was also available (genetic cohort). The clinical algorithm, containing body surface area and indication, explained 45.0% of the variability in dose requirement of acenocoumarol. After addition of the VKORC1, CYP2C9, and CYP2C18 genotypes to the algorithm, this increased to 61.8%. Conclusions These findings show that clinical factors had the largest impact on the required dose of acenocoumarol in pediatric patients. Nevertheless, genetic factors, and especially VKORC1, also explained a significant part of the variability.