ABSTRACT Genetic research on nicotine dependence has utilized multiple assessments that are in weak agreement. We conducted a genome-wide association study of nicotine dependence defined using the Diagnostic and Statistical Manual of Mental Disorders (DSM-NicDep) in 61,861 individuals (47,884 of European ancestry, 10,231 of African ancestry, 3,746 of East Asian ancestry) and compared the results to other nicotine-related phenotypes. We replicated the well-known association at the CHRNA5 locus (lead SNP: rs147144681, p =1.27E-11 in European ancestry; lead SNP = rs2036527, p = 6.49e-13 in cross-ancestry analysis). DSM-NicDep showed strong positive genetic correlations with cannabis use disorder, opioid use disorder, problematic alcohol use, lung cancer, material deprivation, and several psychiatric disorders, and negative correlations with respiratory function and educational attainment. A polygenic score of DSM-NicDep predicted DSM-5 tobacco use disorder and 6 of 11 individual diagnostic criteria, but none of the Fagerström Test for Nicotine Dependence (FTND) items, in the independent NESARC-III sample. In genomic structural equation models, DSM-NicDep loaded more strongly on a previously identified factor of general addiction liability than did a “problematic tobacco use” factor (a combination of cigarettes per day and nicotine dependence defined by the FTND). Finally, DSM-NicDep was strongly genetically correlated with a GWAS of tobacco use disorder as defined in electronic health records, suggesting that combining the wide availability of diagnostic EHR data with nuanced criterion-level analyses of DSM tobacco use disorder may produce new insights into the genetics of this disorder.
Abstract Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a significant proportion of common risk variation. Understanding the genetic factors underlying the specific symptoms of these disorders will be crucial for improving diagnosis, intervention and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and 54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all cases to controls, of which 41 represented novel findings. Two genome-wide significant loci were identified when comparing SCZ to BD and a third was found when directly incorporating functional information. Regional joint association identified a genomic region of overlapping association in BD and SCZ with disease-independent causal variants indicating a fourth region contributing to differences between these disorders. Regional SNP-heritability analyses demonstrated that the estimated heritability of BD based on the SCZ GWS regions was significantly higher than that based on the average genomic region (91 regions, p = 1.2×10 −6 ) while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we calculated polygenic risk scores and identified several significant correlations with: 1) SCZ subphenotypes: negative symptoms (SCZ, p=3.6×10 −6 ) and manic symptoms (BD, p=2×10 −5 ), 2) BD subphenotypes: psychotic features (SCZ p=1.2×10 −10 , BD p=5.3×10 −5 ) and age of onset (SCZ p=7.9×10 −4 ). Finally, we show that psychotic features in BD has significant SNP-heritability (h 2 snp =0.15, SE=0.06), and a significant genetic correlation with SCZ (r g =0.34) in addition there is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we have identified specific loci pointing to a potential role of 4 genes ( DARS2 , ARFGEF2 , DCAKD and GATAD2A ) that distinguish between BD and SCZ, providing an opportunity to understand the biology contributing to clinical differences of these disorders. Our results provide the best evidence so far of genomic components distinguishing between BD and SCZ that contribute directly to specific symptom dimensions.
Abstract Genome-wide significant associations generally explain only a small proportion of the narrow-sense heritability of complex disease ( h 2 ). While considerably more heritability is explained by all genotyped SNPs ( h g 2 ), for most traits, much heritability remains missing ( h g 2 < h 2 ). Rare variants, poorly tagged by genotyped SNPs, are a major potential source of the gap between h g 2 and h 2 . Recent efforts to assess the contribution of both sequenced and imputed rare variants to phenotypes suggest that substantial heritability may lie in these variants. Here we analyze sequenced SNPs, imputed SNPs and haploSNPs— haplotype variants constructed from within a sample, without using a reference panel— and show that studies of heritability from these variants may be strongly confounded by subtle population stratification. For example, when meta-analyzing heritability estimates from 22 randomly ascertained case-control traits from the GERA cohort, we observe a statistically significant increase in heritability explained by imputed SNPs even after correcting for principal components (PCs) from genotyped (or imputed) SNPs. However, this increase is eliminated when correcting for stratification using PCs from a larger number of haploSNPs. We note that subtle stratification may also impact estimates of heritability from array SNPs, although we find that this is generally a less severe problem. Overall, our results suggest that estimating the heritability explained by rare variants for case-control traits requires exquisite control for population stratification, but current methods may not provide this level of control.
Abstract Background and Aims Genetic studies of alcohol dependence (AD) have identified several candidate loci and genes, but most observed effects are small and difficult to reproduce. A plausible explanation for inconsistent findings may be a violation of the assumption that genetic factors contributing to each of the seven DSM‐IV criteria point to a single underlying dimension of risk. Given that recent twin studies suggest that the genetic architecture of AD is complex and probably involves multiple discrete genetic factors, the current study employed common single nucleotide polymorphisms in two multivariate genetic models to examine the assumption that the genetic risk underlying DSM‐IV AD is unitary. Design, Setting, Participants, Measurements AD symptoms and genome‐wide single nucleotide polymorphism (SNP) data from 2596 individuals of European descent from the Study of Addiction: Genetics and Environment were analyzed using genomic‐relatedness‐matrix restricted maximum likelihood. DSM‐IV AD symptom covariance was described using two multivariate genetic factor models. Findings Common SNPs explained 30% (standard error = 0.136, P = 0.012) of the variance in AD diagnosis. Additive genetic effects varied across AD symptoms. The common pathway model approach suggested that symptoms could be described by a single latent variable that had a SNP heritability of 31% (0.130, P = 0.008). Similarly, the exploratory genetic factor model approach suggested that the genetic variance/covariance across symptoms could be represented by a single genetic factor that accounted for at least 60% of the genetic variance in any one symptom. Conclusion Additive genetic effects on DSM‐IV alcohol dependence criteria overlap. The assumption of common genetic effects across alcohol dependence symptoms appears to be a valid assumption.