Pangolins, considered the most-trafficked mammals on Earth, are rapidly heading to extinction. Eight extant species of these African and Asian scale-bodied anteaters are commonly recognized, but their evolutionary relationships remain largely unexplored. Here, we present the most comprehensive phylogenetic assessment of pangolins, based on genetic variation of complete mitogenomes and 9 nuclear genes. We confirm deep divergence among Asian and African pangolins occurring not later than the Oligocene-Miocene boundary ca. 23 million years ago (Ma) (95% HPD = 18.7-27.2), limited fossil evidence suggesting dispersals from Europe. We recognize 3 genera including Manis (Asian pangolins), Smutsia (large African pangolins), and Phataginus (small African pangolins), which first diversified in the Middle-Upper Miocene (9.8-13.3 Ma) through a period of gradual cooling coinciding with a worldwide taxonomic diversification among mammals. Based on large mitogenomic distances among the 3 genera (18.3-22.8%) and numerous (18) morphological traits unique to Phataginus, we propose the subfamily Phatagininae subfam. nov. to designate small African pangolins. In contrast with the morphological-based literature, our results establish that the thick-tailed pangolin (Manis crassicaudata) is sister-species of the Sunda (Manis javanica) and Palawan (Manis culionensis) pangolins. Mitogenomic phylogenetic delineations supported additional pangolin species subdivisions (n = 13), including 6 African common pangolin (Phataginus tricuspis) lineages, but these patterns were not fully supported by our multi-locus approach. Finally, we identified more than 5000 informative mitogenomic sites and diagnostic variation from 5 nuclear genes among all species and lineages of pangolins, providing an important resource for further research and for effectively tracing the worldwide pangolin trade.
Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.
Tigers and their close relatives (Panthera) are some of the world's most endangered species. Here we report the de novo assembly of an Amur tiger whole-genome sequence as well as the genomic sequences of a white Bengal tiger, African lion, white African lion and snow leopard. Through comparative genetic analyses of these genomes, we find genetic signatures that may reflect molecular adaptations consistent with the big cats' hypercarnivorous diet and muscle strength. We report a snow leopard-specific genetic determinant in EGLN1 (Met39>Lys39), which is likely to be associated with adaptation to high altitude. We also detect a TYR260G>A mutation likely responsible for the white lion coat colour. Tiger and cat genomes show similar repeat composition and an appreciably conserved synteny. Genomic data from the five big cats provide an invaluable resource for resolving easily identifiable phenotypes evident in very close, but distinct, species.
Pangolins, unique mammals with scales over most of their body, no teeth, poor vision, and an acute olfactory system, comprise the only placental order (Pholidota) without a whole-genome map. To investigate pangolin biology and evolution, we developed genome assemblies of the Malayan ( Manis javanica ) and Chinese ( M. pentadactyla ) pangolins. Strikingly, we found that interferon epsilon ( IFNE ), exclusively expressed in epithelial cells and important in skin and mucosal immunity, is pseudogenized in all African and Asian pangolin species that we examined, perhaps impacting resistance to infection. We propose that scale development was an innovation that provided protection against injuries or stress and reduced pangolin vulnerability to infection. Further evidence of specialized adaptations was evident from positively selected genes involving immunity-related pathways, inflammation, energy storage and metabolism, muscular and nervous systems, and scale/hair development. Olfactory receptor gene families are significantly expanded in pangolins, reflecting their well-developed olfaction system. This study provides insights into mammalian adaptation and functional diversification, new research tools and questions, and perhaps a new natural IFNE -deficient animal model for studying mammalian immunity.