Automatic tube compensation (ATC) unloads endotracheal tube (ETT) resistance. We conducted a bench assessment of ATC functionality in ICU ventilators to improve clinical management.
METHODS:
This study had 2 phases. First, we performed an international survey on the use of ATC in clinical practice, hypothesizing a rate of ATC use of 25%. Second, we tested 7 modern ICU ventilators in a lung model mimicking a normal subject (Normal), a subject with ARDS, and a subject with COPD. Inspiratory effort consisted of esophageal pressure over 30 consecutive breaths obtained in a real patient under weaning. A brand new 8-mm inner diameter ETT was attached to the lung model, and ATC was set at 100% compensation for the ETT. The 30 breaths were first run with ATC off and no ETT (ie, reference period), and then with ATC on and ETT (ie, active period). The primary end point was the difference in tidal volume (VT) between reference and active periods. We hypothesized that the VT difference should be equal to 0 in an ideally functioning ATC. VT difference was compared across ventilators and respiratory mechanics conditions using a linear mixed-effects model.
RESULTS:
The clinical use of ATC was 64% according to 644 individuals who responded to the international survey. The VT difference varied significantly across ventilators in all respiratory mechanics configurations. The divergence between VT difference and 0 was small but significant: the extreme median (interquartile range) values were −0.013 L (–0.019 to −0.002) in the COPD model and 0.056 L (0.051–0.06) in the Normal model. VT difference for all ventilators was 0.015 L (95% CI 0.013–0.018) in the ARDS model, which was significantly different from 0.021 L (95% CI 0.018–0.024) in the Normal model (P < .001) and 0.010 L (0.007–0.012) in the COPD model (P = .003).
CONCLUSIONS:
ATC is used more frequently in clinical practice than expected. In addition, VT delivery by ATC differed slightly though significantly between ventilators.
In acute respiratory distress syndrome (ARDS) patients, it has recently been proposed to set positive end-expiratory pressure (PEEP) by targeting end-expiratory transpulmonary pressure. This approach, which relies on the measurement of absolute esophageal pressure (Pes), has been used in supine position (SP) and has not been investigated in prone position (PP). Our purposes were to assess Pes-guided strategy to set PEEP in SP and in PP as compared with a PEEP/FIO2 table and to explore the early (1 h) and late (16 h) effects of PP on lung and chest wall mechanics. We performed a prospective, physiologic study in two ICUs in university hospitals on ARDS patients with PaO2/FIO2 < 150 mmHg. End-expiratory Pes (Pes,ee) was measured in static (zero flow) condition. Patients received PEEP set according to a PEEP/FIO2 table then according to the Pes-guided strategy targeting a positive (3 ± 2 cmH2O) static end-expiratory transpulmonary pressure in SP. Then, patients were turned to PP and received same amount of PEEP from PEEP/FIO2 table then Pes-guided strategy. Respiratory mechanics, oxygenation and end-expiratory lung volume (EELV) were measured after 1 h of each PEEP in each position. For the rest of the 16-h PP session, patients were randomly allocated to either PEEP strategy with measurements done at the end. Thirty-eight ARDS patients (27 male), mean ± SD age 63 ± 13 years, were included. There were 33 primary ARDS and 26 moderate ARDS. PaO2/FIO2 ratio was 120 ± 23 mmHg. At same PEEP/FIO2 table-related PEEP, Pes,ee averaged 9 ± 4 cmH2O in both SP and PP (P = 0.88). With PEEP/FIO2 table and Pes-guided strategy, PEEP was 10 ± 2 versus 12 ± 4 cmH2O in SP and 10 ± 2 versus 12 ± 5 cmH2O in PP (PEEP strategy effect P = 0.05, position effect P = 0.96, interaction P = 0.96). With the Pes-guided strategy, chest wall elastance increased regardless of position. Lung elastance and transpulmonary driving pressure decreased in PP, with no effect of PEEP strategy. Both PP and Pes-guided strategy improved oxygenation without interaction. EELV did not change with PEEP strategy. At the end of PP session, respiratory mechanics did not vary but EELV and PaO2/FIO2 increased while PaCO2 decreased. There was no impact of PP on Pes measurements. PP had an immediate improvement effect on lung mechanics and a late lung recruitment effect independent of PEEP strategy.
Abstract Background Both critically ill patients with coronavirus disease 2019 (COVID-19) and patients receiving extracorporeal membrane oxygenation (ECMO) support exhibit a high incidence of healthcare-associated infections (HAI). However, data on incidence, microbiology, resistance patterns, and the impact of HAI on outcomes in patients receiving ECMO for severe COVID-19 remain limited. We aimed to report HAI incidence and microbiology in patients receiving ECMO for severe COVID-19 and to evaluate the impact of ECMO-associated infections (ECMO-AI) on in-hospital mortality. Methods For this study, we analyzed data from 701 patients included in the ECMOSARS registry which included COVID-19 patients supported by ECMO in France. Results Among 602 analyzed patients for whom HAI and hospital mortality data were available, 214 (36%) had ECMO-AI, resulting in an incidence rate of 27 ECMO-AI per 1000 ECMO days at risk. Of these, 154 patients had bloodstream infection (BSI) and 117 patients had ventilator-associated pneumonia (VAP). The responsible microorganisms were Enterobacteriaceae (34% for BSI and 48% for VAP), Enterococcus species (25% and 6%, respectively) and non-fermenting Gram-negative bacilli (13% and 20%, respectively). Fungal infections were also observed (10% for BSI and 3% for VAP), as were multidrug-resistant organisms (21% and 15%, respectively). Using a Cox multistate model, ECMO-AI were not found associated with hospital death (HR = 1.00 95% CI [0.79–1.26], p = 0.986). Conclusions In a nationwide cohort of COVID-19 patients receiving ECMO support, we observed a high incidence of ECMO-AI. ECMO-AI were not found associated with hospital death. Trial registration number NCT04397588 (May 21, 2020).
Hemodynamic response to prone position (PP) has never been studied in a large series of patients with acute respiratory distress syndrome (ARDS). The primary aim of this study was to estimate the rate of PP sessions associated with cardiac index improvement. Secondary objective was to describe hemodynamic response to PP and during the shift from PP to supine position.The study was a single-center retrospective observational study, performed on ARDS patients, undergoing at least one PP session under monitoring by transpulmonary thermodilution. PP sessions performed more than 10 days after ARDS onset, or with any missing cardiac index measurements before (T1), at the end (T3), and after the PP session (T4) were excluded. Changes in hemodynamic parameters during PP were tested after statistical adjustment for volume of fluid challenges, vasopressor and dobutamine dose at each time point to take into account therapeutic changes during PP sessions.In total, 107 patients fulfilled the inclusion criteria, totalizing 197 PP sessions. Changes in cardiac index between T1 and T2 (early response to PP) and between T1 and T3 (late response to PP) were significantly correlated (R2 = 0.42, p < 0.001) with a concordance rate amounting to 85%. Cardiac index increased significantly between T1 and T3 in 49 sessions (25% [95% confidence interval (CI95%) 18-32%]), decreased significantly in 46 (23% [CI95% 16-31%]), and remained stable in 102 (52% [CI95% 45-59%]). Global end-diastolic volume index (GEDVI) increased slightly but significantly from 719 ± 193 mL m-2 at T1 to 757 ± 209 mL m-2 at T3 and returned to baseline values at T4. Cardiac index and oxygen delivery decreased slightly but significantly from T3 to T4, without detectable increase in lactate level. Patients who increased their cardiac index during PP had significantly lower CI, GEDVI, global ejection fraction at T1, and received significantly more fluids than patients who did not.PP is associated with an increase in cardiac index in 18% to 32% of all PP sessions and a sustained increase in GEDVI reversible after return to supine position. Return from prone to supine position is associated with a slight hemodynamic impairment.
Awake prone positioning (PP) reduces need for intubation for patients with COVID-19 with acute respiratory failure. We investigated the hemodynamic effects of awake PP in non-ventilated subjects with COVID-19 acute respiratory failure.
METHODS:
We conducted a single-center prospective cohort study. Adult hypoxemic subjects with COVID-19 not requiring invasive mechanical ventilation receiving at least one PP session were included. Hemodynamic assessment was done with transthoracic echocardiography before, during, and after a PP session.
RESULTS:
Twenty-six subjects were included. We observed a significant and reversible increase in cardiac index (CI) during PP compared to supine position (SP): 3.0 ± 0.8 L/min/m2 in PP, 2.5 ± 0.6 L/min/m2 before PP (SP1), and 2.6 ± 0.5 L/min/m2 after PP (SP2, P < .001). A significant improvement in right ventricular (RV) systolic function was also evidenced during PP: The RV fractional area change was 36 ± 10% in SP1, 46 ± 10% during PP, and 35 ± 8% in SP2 (P < .001). There was no significant difference in PaO2/FIO2 and breathing frequency.
CONCLUSION:
CI and RV systolic function are improved by awake PP in non-ventilated subjects with COVID-19 with acute respiratory failure.
The clinical profile and outcomes of patients with Coronavirus Disease 2019 (COVID-19) who require veno-arterial extracorporeal membrane oxygenation (VA-ECMO) or veno-arterial-venous extracorporeal membrane oxygenation (VAV-ECMO) are poorly understood. We aimed to describe the characteristics and outcomes of these patients and to identify predictors of both favourable and unfavourable outcomes.ECMOSARS is a multicentre, prospective, nationwide French registry enrolling patients who require veno-venous extracorporeal membrane oxygenation (ECMO)/VA-ECMO in the context of COVID-19 infection (652 patients at 41 centres). We focused on 47 patients supported with VA- or VAV-ECMO for refractory cardiogenic shock.The median age was 49. Fourteen percent of patients had a prior diagnosis of heart failure. The most common aetiologies of cardiogenic shock were acute pulmonary embolism (30%), myocarditis (28%) and acute coronary syndrome (4%). Extracorporeal cardiopulmonary resuscitation (E-CPR) occurred in 38%. In-hospital survival was 28% in the whole cohort, and 43% when E-CPR patients were excluded. ECMO cannulation was associated with significant improvements in pH and FiO2 on day 1, but non-survivors showed significantly more severe acidosis and higher FiO2 than survivors at this point (P = 0.030 and P = 0.006). Other factors associated with death were greater age (P = 0.02), higher body mass index (P = 0.03), E-CPR (P = 0.001), non-myocarditis aetiology (P = 0.02), higher serum lactates (P = 0.004), epinephrine (but not noradrenaline) use before initiation of ECMO (P = 0.003), haemorrhagic complications (P = 0.001), greater transfusion requirements (P = 0.001) and more severe Survival after Veno-Arterial ECMO (SAVE) and Sonographic Assessment of Intravascular Fluid Estimate (SAFE) scores (P = 0.01 and P = 0.03).We report the largest focused analysis of VA- and VAV-ECMO recipients in COVID-19. Although relatively rare, the need for temporary mechanical circulatory support in these patients is associated with poor prognosis. However, VA-ECMO remains a viable solution to rescue carefully selected patients. We identified factors associated with poor prognosis and suggest that E-CPR is not a reasonable indication for VA-ECMO in this population.