Gait variability is defined as the intrinsic fluctuations which occur during continuous gait cycles. Increased gait variability is closely associated with increased fall risk in older adults. This study investigated the influence of attention-demanding tasks on gait variability in elderly healthy adults.
BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.
We investigated the changes of the vestibulospinal tract (VST) and parietoinsular vestibular cortex (PIVC) using diffusion tensor imaging (DTI) and relation to balance between old and young healthy adults.This study recruited eleven old adults (6 males, 5 females; mean age 63.36 ± 4.25 years) and 12 young adults (7 males, 5 females; mean age 28.42 ± 4.40 years). The lateral and medial VST and PIVC were reconstructed using DTI. Fractional anisotropy (FA), mean diffusivity (MD), and tract volume were measured. The six-minute walk test (6-MWT), the timed up and go test (TUG), and the Berg balance scale (BBS) were conducted. Spatiotemporal parameters during tandem gait and values of sway during one-leg standing using the wearable sensors were measured. All parameters between two groups were analyzed by the Mann-Whitney U test and independent t-test.Statistically significant decrease in old adults was detected in the tract volume of lateral (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (p = 0.005) and medial VST (.The results suggested that there was a relationship between DTI parameters in the vestibular neural pathway and balance according to aging.
Our website uses cookies to enhance your experience. By continuing to use our site, or clicking "Continue," you are agreeing to our Cookie Policy | Continue JAMA Neurology HomeNew OnlineCurrent IssueFor Authors Podcast Publications JAMA JAMA Network Open JAMA Cardiology JAMA Dermatology JAMA Health Forum JAMA Internal Medicine JAMA Neurology JAMA Oncology JAMA Ophthalmology JAMA Otolaryngology–Head & Neck Surgery JAMA Pediatrics JAMA Psychiatry JAMA Surgery Archives of Neurology & Psychiatry (1919-1959) JN Learning / CMESubscribeJobsInstitutions / LibrariansReprints & Permissions Terms of Use | Privacy Policy | Accessibility Statement 2023 American Medical Association. All Rights Reserved Search All JAMA JAMA Network Open JAMA Cardiology JAMA Dermatology JAMA Forum Archive JAMA Health Forum JAMA Internal Medicine JAMA Neurology JAMA Oncology JAMA Ophthalmology JAMA Otolaryngology–Head & Neck Surgery JAMA Pediatrics JAMA Psychiatry JAMA Surgery Archives of Neurology & Psychiatry Input Search Term Sign In Individual Sign In Sign inCreate an Account Access through your institution Sign In Purchase Options: Buy this article Rent this article Subscribe to the JAMA Neurology journal
Eating utensils are usually used from early childhood and thereafter throughout life; therefore, clarification of the effect of use of eating utensils on the brain would be an important topic. Using functional near infrared spectroscopy, we attempted to compare patterns of cortical activation generated during the use of three eating utensils. Twenty healthy normal subjects were recruited. The experimental tasks included transfer of black beans using a fork, wooden chopsticks and stainless steel chopsticks. We measured values of oxyhaemoglobin (HbO) and total haemoglobin (HbT) in five regions of interest: the prefrontal cortex (PFC), frontal eye field (FEF), premotor cortex (PMC), supplementary motor area and primary sensorimotor cortex (SM1). HbO values in all five regions of interest were significantly higher during use of stainless steel chopsticks, compared with use of wooden chopsticks and a fork ( p < 0.05). Regarding the analysis in each region of interest, higher activation was observed in the PFC and FEF during use of wooden chopsticks and stainless steel chopsticks than during use of a fork and wooden chopsticks, respectively, in terms of HbO and HbT ( p < 0.05). HbO value during use of stainless steel chopsticks was higher than that during use of a fork in the PMC and SM1 ( p < 0.05). Use of stainless steel chopsticks involves greater recruitment of neuronal activation in the cerebral cortex, compared with use of wooden chopsticks or a fork.
Prognosis predictability of the nigrostriatal tract (NST) and corticoreticulospinal tract (CRT) of affected hemisphere at early stage for gait function at chronic stage were investigated using diffusion tensor tractography (DTT) in patients with a cerebral infarction. Thirty consecutive patients with middle cerebral artery (MCA) territory infarction were recruited. Functional ambulation category (FAC) was used to evaluate the gait function at chronic stage. Fractional anisotropy (FA) and tract volume (TV) of ipsilesional NST and ipsilesional CRT were determined to be DTT parameters at early stage. FAC score at chronic stage showed strong positive correlations with TVs of ipsilesional NST and ipsilesional CRT at early stage (ipsilesional NST R = 0.786; ipsilesional CRT R = 0.821; P < .05). According to regression model, FAC score at chronic stage was positively related to TVs of ipsilesional NST and ipsilesional CRT at early stage (Adjusted R2 = 0.700, F = 34.905, P < .05). FAC score at chronic stage was associated more positively with TV of ipsilesional CRT (β = 0.532) than that of ipsilesional NST (β = 0.362). Ipsilesional NST and ipsilesional CRT at early stage had prognosis predictability for gait function at chronic stage in patients with an MCA infarction. Moreover, ipsilesional CRT had stronger predictability than ipsilesional NST.
The aberrant pyramidal tract is the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 21-year-old man presented with right hemiparesis due to a traumatic intracerebral hemorrhage in the left corona radiata. His motor function recovered almost to the normal state at 10 months after onset. Through diffusion tensor tractography, the pyramidal tract in the affected (left) hemisphere showed discontinuation at the pontine level at 13 months after onset. An aberrant pyramidal tract was observed, which originated from the primary motor cortex and the supplementary motor area and descended through the corona radiata, then through the posterior limb of the internal capsule and the medial lemniscus pathway from the midbrain to the pons, finally entered into the pyramidal tract area at the pontomedullary junction. It suggests that the motor functions of the right extremities in this patient had recovered by this aberrant pyramidal tract.
Abstract The use of virtual reality (VR) is frequently accompanied by motion sickness, and approaches for preventing it are not yet well established. We explored the effects of synchronized presentations of sound and motion on visually induced motion sickness (VIMS) in order to reduce VIMS. A total of 25 participants bike for 5 minutes with or without sound and motion synchronization presented on a head-mounted display. As a result, the VIMS scores measured by the fast motion sickness scale and simulator sickness questionnaire were significantly lower in the participants who experienced the riding scene with sound and motion than those who experienced the riding scene with sound only, motion only, or neither. Furthermore, analysis of the EEG signal showed that the higher the VIMS, the significant increase in alpha and theta waves in the parietal and occipital lobes. Therefore, we demonstrate that the simultaneous presentation of sound and motion, closely associated with synchronous and visual flow speed, is effective in reducing VIMS while experiencing simulated bike riding in a VR environment.