Sex determination in mammals is controlled by the dominance of either pro-testis (SRY-SOX9-FGF9) or pro-ovary (RSPO1-WNT4-FOXL2) genetic pathways during early gonad development in XY and XX embryos, respectively. We have previously shown that early, robust expression of mouse Sry is dependent on the nuclear protein GADD45g. In the absence of GADD45g, XY gonadal sex reversal occurs, associated with a major reduction of Sry levels at 11.5 dpc. Here, we probe the relationship between Gadd45g and Sry further, using gain- and loss-of-function genetics. First, we show that transgenic Gadd45g overexpression can elevate Sry expression levels at 11.5 dpc in the B6.YPOS model of sex reversal, resulting in phenotypic rescue. We then show that the zygosity of pro-ovarian Rspo1 is critical for the degree of gonadal sex reversal observed in both B6.YPOS and Gadd45g-deficient XY gonads, in contrast to that of Foxl2. Phenotypic rescue of sex reversal is observed in XY gonads lacking both Gadd45g and Rspo1, but this is not associated with rescue of Sry expression levels at 11.5 dpc. Instead, Sox9 levels are rescued by around 12.5 dpc. We conclude that Gadd45g is absolutely required for timely expression of Sry in XY gonads, independently of RSPO1-mediated WNT signalling, and discuss these data in light of our understanding of antagonistic interactions between the pro-testis and pro-ovary pathways.
BackgroundShiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear.MethodsTransgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied.FindingsStx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype.ConclusionsThis study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease.FundingThis work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).
Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria.
The C57BL/6N inbred lines of mice are widely used in genetic research. They are particularly favoured in large scale studies such as the International Mouse Phenotyping Consortium (IMPC), where C57BL/6N mice are genetically altered to generate a collection of null alleles (currently more than 8500 null alleles have been generated). In this project, mice carrying null alleles are subjected to a pipeline of broad-based phenotyping tests to produce wide ranging phenotyping data on each model. We have previously described the development of a Home Cage Analysis system that automatically tracks the activity of group housed mice from a microchip inserted in the groin. This platform allows assessment of multiple biologically relevant phenotypes over long periods of time without experimenter interference, and therefore is particularly suited for high through-put studies. To investigate the impact of microchips on other tests carried out in the IMPC pipeline, we inserted microchips in 12 male and 12 female C57BL/6Ntac mice at seven weeks of age. Starting at nine weeks of age these mice underwent standard phenotyping tests, concurrently with 20 unchipped C57BL/6Ntac mice (10 females, 10 males). Tissues from a subset of the microchipped mice (six males and six females), chosen at random, were also sent for histopathological examination at the end of the phenotyping pipeline. No significant impact of insertion of microchip was observed in any of the phenotyping tests apart from bone mineral density measurement at DEXA due to the nature of the microchip. We therefore recommend that the microchip be inserted during the DEXA procedure, after the measurement is taken but before the mouse has recovered from the anaesthetic. This would avoid multiple anaesthetic exposures and prevent the potential variability in DEXA analysis output.
In light of the oil-drilling disaster in the Gulf of Mexico as well as the series of recalls in the auto industry, this article looks at how best to manage risk in the design of incentive compensation plans. This includes a look at the myriad risk issues and how boards can properly evaluate those risks and build in safeguards in company pay plans to mitigate these concerns. The key risk areas evaluated are strategic, cultural, performance measure and reputational risk. Finally, the authors suggest examining whether the plans in place align with business goals and ensure the company’s business reputation is preserved and is not tarnished. Without effective mitigation, compensation risk can damage the future of the company and its leaders.
Foreign genes can be introduced into whole animals using methods of germline transgenesis and somatic gene delivery. While germline transgenesis can generate useful animal models for genetic studies, it can be costly, time-consuming and requires the use of a large number of animals. An alternative means of gene transfer is to deliver genes to somatic cells using non-viral and viral technologies. Non-viral methods such as naked DNA injection, electroporation and liposome/cation lipid-mediated gene transfer are relatively inefficient. In contrast, viruses are effective vehicles that carry foreign genes into a cell rapidly and efficiently. Here we illustrate the usefulness of adenoviral vectors to express a potent and specific inhibitor of cAMP-dependent protein kinase (PKA) to study the role of cyclic 3',5'-cyclic AMP (cAMP) in the osmotic regulation of the vasopressin gene in a transgenic rat model. The ability to modify endogenous systems within specific cells in a whole animal model allows gene effects to be studied with physiological relevance. The combination of molecular biology and integrative physiology is a powerful application that can aid in the elucidation of how gene function can translate into complex systems in an organism
Abstract Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, causative genes remain mostly unknown. Animal models enable identification of these genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. Here, we comprehensively phenotype Dp1Tyb mice and find wide-ranging DS-like phenotypes including aberrant megakaryopoiesis, reduced bone density, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for studies of many complex DS phenotypes.