Schwertmannite is a common nanomineral in acid sulfate environments such as Acid Mine Drainage (AMD) and Acid Sulfate Soils (ASS). Its high surface area and positively charged surface result in a strong affinity towards toxic oxyanions such as arsenate in solution. However, natural precipitation of schwertmannite also involves the accumulation of other impurities, in particular aluminum, an element that is often incorporated into the structure of Fe-oxide minerals, such as goethite and ferrihydrite, affecting their structural and surface properties. However, little is known about the effect of Al incorporation in schwertmannite on the removal capacity of toxic oxyanions found in AMD and ASS (e.g. arsenate). In this paper, schwertmannite samples with variable Al concentration were synthetized and employed in arsenate adsorption isotherm experiments at a constant pH of 3.5. Solid samples before and after arsenate adsorption were characterized using high energy X-ray diffraction and pair distribution function analyses in order to identify structural differences correlated with the Al content as well as variations in the coordination of arsenate adsorbed on the mineral surface. These analyses showed limited Al accumulation on schwertmannite (up to 5%) with a low effect on its structure. The maximum arsenate sorption capacity (258 mmolH2AsO4 molFe-1) was in the range of that with pure schwertmannite, but a higher proportion of inner-sphere coordination was observed. Finally, Al was found to desorb from schwertmannite, with adsorbed arsenate preventing this effect and increasing the stability of the mineral. These results are useful to interpret observations from the field, in particular from river water affected by AMD and ASS, where similar conditions are observed, and where aluminum incorporation is expected.
Cerium oxide (ceria, CeO2) is a technologically important material for energy conversion applications. Its activities strongly depend on redox states and oxygen vacancy concentration. Understanding the functionality of chemical active species and behavior of oxygen vacancy during operation, especially in high-temperature solid-state electrochemical cells, is the key to advance future material design. Herein, the structure evolution of ceria is spatially resolved using bulk-sensitive operando X-ray diffraction and spectroscopy techniques. During water electrolysis, ceria undergoes reduction, and its oxygen non-stoichiometry shows a dependence on the electrochemical current. Cerium local bonding environments vary concurrently to accommodate oxygen vacancy formation, resulting in changes in Ce–O coordination number and Ce3+/Ce4+ redox couple. When reduced enough, a crystallographic phase transition occurs from α to an α′ phase with more oxygen vacancies. Nevertheless, the transition behavior is intriguingly different from the one predicted in the standard phase diagram of ceria. This paper demonstrates a feasible means to control oxygen non-stoichiometry in ceria via electrochemical potential. It also sheds light on the mechanism of phase transitions induced by electrochemical potential. For electrochemical systems, effects from a large-scale electrical environment should be taken into consideration, besides effective oxygen partial pressure and temperature.
Although the spectrum originating from a superconducting bending magnet is quasi-continuous, it shows important intensity variations through its spectral range. A method to determine the incident energy-dependent flux variation based on the comparison between observed intensities and the calculated intensities of a well known structure (calcite) is presented here. It is found that the measured flux is highly sensitive to the use of correct Debye–Waller factors for the atoms of the standard crystal. By using the measured flux curve, it was possible to unambiguously index the Laue diffraction pattern of a trigonal crystal structure in its hexagonal setting. This is a crucial but difficult first step for the determination of strain and stress in materials with this symmetry, such as quartz, Mg, Ti, Zn etc.