Climate change is leading to higher plant water requirements and rootstock can play a role in tree adaptation, since the more vigorous ones are also likely to be more stress resistant. Pear trees of the cv. Abbé Fetél grafted on BA29 (more vigorous) and SYDO (more dwarfing) quince were irrigated according to three different treatments: 110 C, 80 DI and 60 DI, corresponding to 110%, 80% and 60% of the crop evapotranspiration rate (ETc), respectively. Shoot and fruit growth, water potentials, leaf gas exchanges and dry matter content were monitored during the season. Fruit quality was evaluated at harvest and after 6 months of storage at 1 °C. Results show how for both rootstocks, 60 DI significantly decreased their stem (Ψstem) and leaf (Ψleaf) water potentials as well as leaf gas exchanges. In SYDO, final fruit size was affected by irrigation, with lower values on 60 DI, but in BA29, no differences were found between treatments. After storage, BA29 60 DI fruit showed a higher soluble solid content, while in SYDO fruit, firmness was more affected by irrigation level. In conclusion, despite a slight decrease in fruit size, reduced irrigation led to fruit with higher quality features that were also maintained after a long period of storage.
Although superficial scald (SS) is well characterized on apples, there are only a few insights concerning the influence that agronomic and management variability may have on the occurrence of this physiological disorder on pears. In this study, we aimed to improve our understanding of the effect of different preharvest factors on SS development using a multivariate statistical approach. Pears (Pyrus communis L.) cv “Abate Fetel” were picked during two consecutive seasons (2018-2019 and 2019-2020) from twenty-three commercial orchards from three growing areas (Modena, Ferrara, and Ravenna provinces) in the Emilia-Romagna region of Italy. Bioclimatic indices such as weather and soil, agronomic management such fertilization and irrigation, orchard features such as rootstock and training systems, and SS incidence were carried out at harvest and periodically postharvest in all producers. Two different storage scenarios (regular atmosphere and use of 1-MCP) were also evaluated. Our data in both seasons showed high heterogeneity between farms for SS symptoms after cold storage either in the regular atmosphere or with 1-MCP treatment. Nevertheless, in 2018, all the producers showed SS at the end of the storage season, but in 2019 some of them did not exhibit SS for up to 5 months. In fact, some preharvest factors changed considerably between the two seasons such as yield and weather conditions. Indeed, some factors seem to affect SS in both growing seasons. Some can increase its occurrences such as physiological and agronomical factors: high yields, late date of blooming, heavy downpours, improper irrigation management (low watering frequency and high volumes), nitrogen (included that deriving from organic matter), soil texture (presence of clay), orchard age, and canopy volume in relation to training system and rootstock. Others can decrease SS such as climatic and management factors: late harvest dates, rain, gibberellins, calcium, manure, absence of antihail nets or use of photoselective nets, and site (probably related to better soils toward the Adriatic coast). Initial preharvest variability is an important factor that modulates physiological plant stress and, subsequently, the SS after cold storage in “Abate Fetel” pears. Multivariate techniques could represent useful tools to identify reliable multiyear preharvest variables for SS control in pear fruit different batches.
In highly solar irradiated areas, apple production can face challenges due to high evaporative water demands. Shading can be used to lower irrigation requirements and make apple growing more sustainable. In this trial, a white exclusion net (40% shading) integrated with rain protection was compared with a regular anti-hail black net (20% shading), on Rosy Glow apple. Crop physiology, yield and quality parameters were monitored during two consecutive years, under conditions of full and restricted irrigation. Since Et0 under the two cover systems was different, their respective 100% irrigation replacement was different; both covers also received a restricted irrigation treatment (70% replacement of Et0). Tree physiology (midday stem water potential, leaf gas exchanges, seasonal fruit growth) was not affected, neither by less light nor by less water. Moreover, marketable yield, fruit color and soluble solid content were improved under the more shaded environment, even when the irrigation volume was limited. These results are encouraging, as an overall 50% of water was saved (ca. 190 mm tree−1 per year), compared to the control irrigation treatment, under a classic anti-hail system (ca. 370 mm tree−1 per year).
Abstract Fruit growth is a complex mechanism resulting from biochemical and biophysical events leading water and dry matter to accumulate in the fruit tissues. Understanding how fruits choose their growth strategies can help growers optimizing their resource management for a more sustainable production and a higher fruit quality. This paper compares the growth strategies adopted by different fruit crops, at different times during the season and relates their fruit surface conductance to key physiological parameters for fruit growth such as phloem and xylem inflows as well transpiration losses. Our results show how fruits capacity to transpire (determined by their surface conductance) is a key driver in determining the growth strategy adopted by a species and explains the inter-species variability existing among different crops. Indeed, fruits change their surface conductance depending on the species and the phenological stage. This has an impact on the fruit’s ability to lose water due to transpiration, affecting fruit pressure potential and increasing the force with which the fruit is able to attract xylem and phloem flows, with a considerable impact on fruit growth rate.
Fruit growth is a biophysical process that depends mainly on the daily balance between vascular (xylem and phloem) and transpiration flows. This work examines the seasonal and daily behaviour of apricot fruit growth as well as their vascular and transpiration flows. Seasonal patterns of the shoot and fruit growth, as well as fruit surface conductance and dry matter accumulation, were monitored at regular times intervals during the season on “Farbela” and “Ladycot” cultivars. In addition, the daily courses of leaf and stem water potentials and leaf gas exchanges were monitored at 66 and 109 DAFB. On the cultivar “Farbela”, the daily patterns of phloem, xylem, and transpiration flow to and from the fruit were determined through precise and continuous monitoring of fruit diameter variations. Branch sap flow was also determined through the thermal balance method. Apricot fruit growth showed a double sigmoid pattern, typical of other drupaceous species. Stem and leaf water potential maintained values above the stress threshold, and in the last part of the season, the leaf photosynthetic rate increased. Leaves received higher sap flow in the morning and at midday, while a higher amount of xylem water was moved to the fruit in the late afternoon. Fruit showed high transpiration rates, which led to fruit shrinkage during the warmest hours of the day. High xylem inflows balanced the transpiratory losses, while phloem import was lower and occurred mainly during the mid-day hours. As a result, the fruit grew mostly in the late afternoon and night, and its growth was sustained mainly by xylem fluxes, which represented over 90% of the fruit’s total inflows. Later in the season, fruit transpiration and xylem flow decreased but did not stop even at harvest. Phloem import increased its importance throughout the season and, in the final stages, accounted for 36% and then 66% of the daily relative contribution to fruit growth. This knowledge represents a starting point to improving apricot orchard management in terms of irrigation and fertilisation.