Thrombopoietin (THPO) and its receptor myeloproliferative leukemia virus oncogene (MPL) regulate hematopoietic stem cell (HSC) quiescence and maintenance, but also megakaryopoiesis. Thrombocytopenias or aplastic anemias can be treated today with THPO peptide mimetics (romiplostim) or small-molecule THPO receptor agonists (e.g., eltrombopag). These THPO mimetics were designed for human application; however, many preclinical studies are performed in murine models. We investigated the activation of wild-type murine MPL (mMPL) by romiplostim. Romiplostim stimulated AKT, ERK1/2, and STAT5 phosphorylation without preference for one of these pathways, however, with a four- to fivefold lower phosphorylation intensity at high concentration. Faster internalization of mMPL after romiplostim binding could be one explanation of reduced signaling. In vitro megakaryocyte differentiation, proliferation, and maturation by romiplostim was less efficient compared with stimulation with mTHPO. We further dissected mMPL signaling by lentiviral overexpression of mMPL mutants with tyrosine (Y)-to-phenylalanine (F) substitutions in the distal cytoplasmic tyrosines 582 (Y582F), 616 (Y616F), and 621 (Y621F) individually and in combination (Y616F_Y621F) and in truncated receptors lacking 53 (Δ53) or 69 (Δ69) C-terminal amino acids. Mutation at tyrosine residue Y582F caused a gain-of-function with baseline activation and increased ERK1/2 phosphorylation upon stimulation. In agreement with this, proliferation in Y582F-32D cells was increased, yet did not rescue in vitro megakaryopoiesis from Mpl-deficient cells. Y616F and Y621F mutated receptors exhibited strongly impaired ERK1/2 and decreased AKT signaling and conferred reduced proliferation to 32D cells upon mTHPO stimulation but a partial correction of immature megakaryopoiesis in vitro.
Abstract Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging. We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A . Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm -deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).
Platelets are small anucleate cells that circulate in the blood in a resting state but can be activated by external cues. In case of need, platelets from blood donors can be transfused. As an alternative source, platelets can be produced from induced pluripotent stem cells (iPSCs); however, recovered numbers are low.To optimize megakaryocyte (MK) and platelet output from murine iPSCs, we investigated overexpression of the transcription factors GATA-binding factor 1 (GATA1); nuclear factor, erythroid 2; and pre-B-cell leukemia transcription factor 1 (Pbx1) and a hyperactive variant of the small guanosine triphosphatase RhoA (RhoAhc).To avoid off-target effects, we generated iPSCs carrying the reverse tetracycline-responsive transactivator M2 (rtTA-M2) in the Rosa26 locus and expressed the factors from Tet-inducible gammaretroviral vectors. Differentiation of iPSCs was initiated by embryoid body (EB) formation. After EB dissociation, early hematopoietic progenitors were enriched and cocultivated on OP9 feeder cells with thrombopoietin and stem cell factor to induce megakaryocyte (MK) differentiation.Overexpression of GATA1 and Pbx1 increased MK output 2- to 2.5-fold and allowed prolonged collection of MK. Cytologic and ultrastructural analyses identified typical MK with enlarged cells, multilobulated nuclei, granule structures, and an internal membrane system. However, GATA1 and Pbx1 expression did not improve MK maturation or platelet release, although in vitro-generated platelets were functional in spreading on fibrinogen or collagen-related peptide.We demonstrate that the use of rtTA-M2 transgenic iPSCs transduced with Tet-inducible retroviral vectors allowed for gene expression at later time points during differentiation. With this strategy we could identify factors that increased in vitro MK production.
Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4high cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.
Prolonged dynamic CT up to 32 minutes after intravenous bolus injection of 100 ml contrast medium improves the differentiation between benign (hemangiomas) and malignant (metastases) liver lesions. Our study shows that there are three distinct types of hemangiomas and that all three of them behave differently than metastases. Prolonged dynamic improves the problem of differentiation between hemangiomas and metastases but does not solve the problem completely.